Euler Curvature Can Be a Calculated Success

Contributors: Satinder Chopra, Kurt Marfurt

Several (12, we think) types of seismic-based curvature attributes have been introduced the last few years – and of these, the most-positive and the most-negative curvatures described in last month’s article are the most popular.

Most-positive and most-negative curvatures provide more continuous maps of faults and flexures than do maximum and minimum curvatures, because the latter tend to rapidly change algebraic sign at fault and flexure intersections.

Other attributes, such as mean curvature, Gaussian curvature and shape index, also have been used by a few practitioners.

We describe here a technique called Euler curvature, which has valuable applications.

An attraction of Euler curvature is that it can be calculated in any desired azimuth across a 3-D volume to enhance the definition of specific lineaments. When this apparent curvature (the Euler curvature) is computed in several specific azimuths, the results are quite useful for interpreting azimuth-dependent structure.

The flow diagram in figure 1 explains the method for computing azimuth-dependent Euler curvature.

Applications

Mapping the intensities of fracture sets has been a major objective of reflection seismologists. Curvature, acoustic impedance and reflection coherence currently are the most effective attributes used to predict fractures in post-stack seismic data.

We describe here the application of Euler curvature to a 3-D seismic volume from northeast British Columbia, Canada. We use an interactive workflow to utilize Euler curvature much as we do in generating a suite of shaded relief maps.

Figure 2 shows 3-D chair displays through volumes of Euler curvature calculated at azimuths of 0, 45, 90 and 135 degrees from north. The left column shows long-wavelength curvature calculations, and the right column displays short-wavelength calculations.

Notice how east-west lineaments stand out when north-south curvature is estimated (azimuth = 0):

  • When curvature is estimated in an azimuth of 45 degrees, northwest-southeast lineaments are pronounced.
  • When east-west curvature is calculated (azimuth = 90 degrees), north-south features events are emphasized.
  • When northwest-southeast curvature is estimated (azimuth = 135 degrees), events slightly inclined away from north-south are better defined.

The analysis area shown in these figures spans approximately 100 square kilometers.

As emphasized in last month’s article, short-wavelength displays show more lineament detail and resolution than do long-wavelength displays. That principle is illustrated again by the displays in figure 2.

The important concept presented here is that there are obvious advantages in calculating Euler curvature on post-stack seismic volumes, because azimuth directions of curvature can be chosen to highlight lineaments in preferred directions.

Conclusions

Euler curvatures calculated in desired azimuthal directions produce better definitions of targeted lineaments.

Depending on the desired level of detail, either long- wavelength or short-wavelength estimates can be calculated. Short-wavelength Euler curvature would be more beneficial for observing fracture lineaments.

This work is in progress, and we hope to calibrate seismic-based lineaments determined with this technology with lineaments interpreted from image logs.

Acknowledgments

We thank Arcis Corporation for permission to show the data examples, as well as for the permission to publish this work.

Comments (0)

 

Geophysical Corner

Geophysical Corner - Satinder Chopra
Satinder Chopra, award-winning chief geophysicist (reservoir), at Arcis Seismic Solutions, Calgary, Canada, and a past AAPG-SEG Joint Distinguished Lecturer began serving as the editor of the Geophysical Corner column in 2012.

Geophysical Corner - Kurt Marfurt
AAPG member Kurt J. Marfurt is with the University of Oklahoma, Norman, Okla.

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.

VIEW COLUMN ARCHIVES

Image Gallery

Part 2 of 3

This month's column, part two of a three-part series comparing structural and amplitude curvatures, deals with observing fault and fracture lineaments. See: Part 1

See Also: Bulletin Article

Although the linkages among surface sediments, geomorphic forms, and hydrodynamics in Holocene ooid tidal sand shoals have been evaluated recently, how these factors are reflected in the geomorphic evolution and stratigraphic record of shoals is less constrained. Yet, such understanding is essential to developing meaningful predictive conceptual models of three-dimensional architecture of ancient reservoir analogs. Integrating remote-sensing imagery, high-frequency seismic data, and core characterization from Lily Bank, a modern tidally dominated Bahamian ooid shoal in which sedimentologic processes are well documented, reveals the stratigraphic record of geomorphic change. An irregular, gently dipping rocky surface (interpreted as the top Pleistocene) with no pronounced topographic high underlies the Holocene oolitic succession. A 6-m (20-ft)–thick poorly sorted, gravelly muddy sand with few ooids overlies this basal surface. This lower interval is overlain by sand with an upward increase in proportion of ooids, sorting, and grain size. The uppermost unit, present only under active bar forms, is well-sorted oolitic medium sand with accretionary foresets. Sediments vary stratigraphically and geomorphically; the lower unit is finer and less well sorted than the upper units, and in the oolitic upper unit, sediment size and sorting on bar crests are distinct from bar flanks. Collectively, these results suggest that a marked antecedent bump is not necessary for occurrence of ooid shoals and that the stratigraphic record of analogous ooid shoal systems may preserve clues of geomorphic position, as well as geobody size and orientation.
Desktop /Portals/0/PackFlashItemImages/WebReady/Relations-between-geomorphic-form-and.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3563 Bulletin Article

See Also: Energy Policy Blog

BOEM has just issued its programmatic environmental impact statement (PEIS) for comment--through April 7. In announcing the decision, BOEM stated, that its review of geological and geophysical surveys in the Mid- and South-Atlantic planning areas "...establishes multiple mitigation measures designed to minimize the impacts to marine life while setting a path forward for survey activities that will update nearly four-decade-old data on offshore energy resources in the region."

Desktop /Portals/0/PackFlashItemImages/WebReady/atlantic-seismic-survey-2014-03mar-03.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 12377 Energy Policy Blog

The Center for Strategic and International Studies (CSIS) recently published a series of reports assessing how rapid growth in U.S., and possibly global, oil and gas production from shales may impact various net-energy exporting or importing countries.

Desktop /Portals/0/PackFlashItemImages/WebReady/Hero-Global-Impacts-of-US-Shale-Production.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 11996 Energy Policy Blog

See Also: Learn! Blog

Mexico has six basins that produce oil and gas, and tremendous offshore, deep Gulf of Mexico resources. There is also shale potential in formations that extend south from the South Texas Eagle Ford. Still, according to statistics released by Pemex, Mexico’s oil and gas production has declined 25% since the 1980s. The problem has stemmed partially from a lack of investment, and difficulties in implementing new technologies to explore for and develop resources.

Desktop /Portals/0/PackFlashItemImages/WebReady/blog-learn-mexico-energy-reform-golden-lane.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 11333 Learn! Blog

See Also: Short Course

This course addresses the concepts and methods of petroleum reservoir characterization and modeling through lectures, exercises and case studies.

Desktop /Portals/0/PackFlashItemImages/WebReady/ace2015-sc13-rocks-to-models-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 14603 Short Course