For Fractures, P + S = Maximum Efficiency

In areas where fracture-producing stress fields have been oriented at different azimuths over geologic time, there can be fracture sets of varying intensities and different orientations across a stratigraphic interval.

This month, in the last part of our five-part series, we consider here how to use shear (S) seismic data to locate a fracture set oriented at a specific azimuth in a target interval that is embedded in a thick section dominated by a younger and more dominant fracture set oriented in a different azimuth.

The fracture orientations and two crooked-line surface profiles where compressional (P) and S-wave seismic data were acquired are illustrated on figure 1.

Two fracture trends are present:

  • An older, pre-fold fracture set oriented approximately north-south.
  • A younger, more dominant set, oriented approximately east-west, produced during a regional orogeny that fractured massive intervals of rock.

The older fractures can be open and gas-filled in a targeted unit at a depth of approximately 10,000 feet (3,000 meters).

The objective is to find this relatively thin interval with a north-south fracture set embedded in a thick section of more dominant, fold-related, and non-productive east-west fractures.

P-wave and SH-wave seismic data acquired along the two crooked-line profiles are shown as figure 2. The P-wave profiles tie at their intersection point, showing that P waves exhibit minor difference in velocity when they propagate parallel to and orthogonal to the east-west fractures that extend across a large part of the geological section.

This weak reaction of P-wave velocity to fracture orientation is one reason why P-waves have limited value for analyzing fracture systems.

A different behavior is observed for the SH data. SH reflections on Line 2, where the SH particle-displacement is aligned with the dominant east-west fractures (figure 1), arrive earlier than do their corresponding reflections on Line 1, where the SH particle-displacement vector is orthogonal to the extensive east-west fractures.

As has been described in the preceding articles of this series, the SH polarization along Line 2 is the fast-S mode for the east-west fractures, and the SH polarization along Line 1 is the slow-S mode for east-west fractures.

By comparing these P and SH images, we see hard evidence that S-wave velocity reacts more strongly to fractures than does P-wave velocity.

A valuable interpretation procedure is illustrated on figure 3, where the two SH profiles are depth registered across the reservoir target interval.

Here, the image on Line 1 is advanced in time to align key reflection events A and B above and below the targeted reservoir, the circled event at the tie point. If the desired north-south fractures are present within the reservoir interval, the reflection event will dim on Line 2, because the SH polarization on that profile would be the slow-S mode for a north-south fracture set.

As shown in parts three and four of this series (June and July EXPLORERs), slow-S velocity S2 decreases when fracture density increases, and thus S2 reflectivity weakens as shown in this example. In contrast, the reflection would remain bright on Line 1, where the SH polarization is the fast-S mode for north-south fractures.

That reflectivity behavior is what is demonstrated inside the circled target interval.

The exploration problem described here of locating a subtle fracture set hidden by a more dominant fracture set is one of the most challenging that can be encountered in interpreting fracture attributes from seismic data.

The fundamental principle illustrated by this case history is that multicomponent seismic data that provide both P and S data are far more valuable for fracture analysis than are single-component P-wave data alone.

Incidentally, this story and its illustrations are taken from a 20-year old U.S. patent (#4,817,061) – showing that good technology can be found in places other than technical journals.

Comments (0)


Image Gallery

See Also: Book

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3965 Book

See Also: Bulletin Article

Prolific hydrocarbon discoveries in the subsalt, commonly known as the “presalt,” section of Brazil and the conjugate African margin have created a business imperative to predict reservoir quality in lacustrine carbonates. Geothermal convection is a style of groundwater flow known to occur in rift settings, which is capable of diagenetic modification of reservoir quality. We simulated variable density groundwater flow coupled with chemical reactions to evaluate the potential for diagenesis driven by convection in subsalt carbonates.

Rates of calcite diagenesis are critically controlled by temperature gradient and fluid flux following the principles of retrograde solubility. Simulations predict that convection could operate in rift carbonates prior to salt deposition, but with rates of dissolution in the reservoir interval only on the order of 0.01 vol. %/m.y., which is too low to significantly modify reservoir quality. The exception is around permeable fault zones and/or unconformities where flow is focused and dissolution rates are amplified to 1 to 10 vol. %/m.y. and could locally modify reservoir quality. After salt deposition, simulations also predict convection with a critical function for salt rugosity. The greatest potential for dissolution at rates of 0.1 to 1 vol. %/m.y. occurs where salt welds, overlying permeable carbonates thin to 500 m (1640 ft) or less. With tens of million years residence times feasible, convection under these conditions could locally result in reservoir sweet spots with porosity modification of 1% to 10% and potentially an order of magnitude or more in reservoir permeability. Integrating quantitative model–derived predictive diagenetic concepts with traditional subsurface data sets refines exploration to production scale risking of carbonate reservoir presence and quality.

Desktop /Portals/0/PackFlashItemImages/WebReady/geothermal-convection-in-south-atlantic-subsalt.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 5682 Bulletin Article

See Also: DL Abstract

When evaluating paleosystems, there will always be a shortage of data constraints and a surplus of plausible geological scenarios for a basin evaluation. Modelling paleosystems with constraints from the modern has been used as a successful approach to better understand petroleum systems.

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3094 DL Abstract

See Also: Field Seminar

This one-day field trip will apply new crustal-scale seismic experiments and structural balancing in the Northern Rockies to the 3D Laramide geometry and natural fractures of the Denver Basin and its resource plays. We will also examine the resulting syn-and post-Laramide fracture systems that provide critical fluid conduits for successful resource plays, like the Niobrara play of the Eastern Rockies.
Desktop /Portals/0/PackFlashItemImages/WebReady/ace2015-ft-09-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 14691 Field Seminar

See Also: Online e Symposium

As commodity prices have dropped, many shale plays have become uneconomical as statistical plays and have increasingly become recognized as geological plays demanding new insights from data.

Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-3d-seismic-profiles-of-us-shale-plays.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 1437 Online e-Symposium