Riding the Waves: Getting S- When Getting P-

For decades, seismic analysis of subsurface geology has been limited to information that can be extracted from compressional-wave (P-wave) seismic data – but numerous geophysicists are now becoming aware of the advantages of combining shear-wave (S-wave) data with P-wave data.

The advantage, simply stated, is this: A broader range of rock and fluid properties can be estimated than what can be estimated with P-wave data alone.

The purpose of this article is to explain that it may be easier and less costly than you think to acquire S-wave data across onshore prospect areas when conventional P-wave seismic data are being collected.


Seismic sources used to acquire P-wave data across land-based prospects always apply a vertical force vector to the Earth. This statement is true for vibrators (the most common land-based P-wave source), explosives in shot holes and the various types of weight droppers and thumpers that have been utilized to acquire P-wave data over the years.

When a vertical impulse is applied to the Earth, two types of wavefields radiate away from the impact point – a P wavefield, and an SV (vertical shear) wavefield.

(A minor amount of SH – horizontal shear – energy also radiates away from the application point of a vertical impact, but this S-wave mode is weak and will not be considered in this discussion.)

Two examples of the relative energy that is distributed between a downgoing P wavefield and a downgoing SV wavefield produced as the result of a vertical impulse are illustrated onfigure 1. These P and SV radiation patterns correspond to different values of Poisson’s ratio for the Earth medium where the vertical impulse is applied.

A surprising principle to many people, including geophysicists, is that although a vertical-impact source is considered to be a P-wave source, the SV wavefield produced by such a source is often more robust than is its companion P wavefield.

For example, to determine the relative strengths of the downgoing P and SV wavefields at any take-off angle from the source station, one has to only draw a raypath, such as dash-line SAB on figure 1, oriented at take-off angle Φ. The points where this line intersects the P and SV radiation pattern boundaries define the relative strengths of the P and SV modes in that illumination direction.

For take-off angle Φ in this example, the strength (B) of the SV mode is larger than the strength (A) of the P mode.


A real-data example that illustrates this physics is displayed as figure 2. This example is a vertical seismic profile (VSP), which is one of the best measurements that can be made to understand seismic wave-propagation physics.

Here, both a downgoing P wave and a downgoing SV wave are produced by the vertical vibrator that was used as the energy source. Either wave mode, P or SV, can be used to image geology. Both modes are embedded in the data, but people tend to utilize only the P-wave mode.

How can we begin to take advantage of the SV-wave data that conventional land-based P-wave seismic sources produce? Only two alterations have to be made in conventional seismic field practice:

  • Deploy three-component geophones rather than single-component geophones.
  • Lengthen the data traces to ensure that SV reflections produced by the downgoing SV wavefield are recorded. Because SV velocity is less than P-wave velocity by a factor of two or more, SV data traces need to be at least twice as long as the traces used to define P-wave data.

These alterations can be done with minimal cost, and the potential benefits of acquiring two S-waves (P-SV or converted shear, and SV-SV or direct shear) rather than just P-wave data can be immense.

Our profession needs to utilize longer data traces when acquiring all land-based seismic data.

Comments (0)

 

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.

VIEW COLUMN ARCHIVES

Image Gallery

See Also: Book

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4483 Book
Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4365 Book

See Also: Bulletin Article

Transfer zones in rift basins are classified into convergent, divergent, and synthetic, based on the relative dip directions of adjacent faults within the transfer zone. Experimental models were constructed to determine the geometry, evolution, and fault patterns associated with each of these transfer zones. In addition, basement faults with initially approaching, laterally offset, and overlapping geometries were modeled. The models consisted of two layers, with stiff clay representing basement and soft clay representing the sedimentary cover. Laser scanning and three-dimensional surface modeling were used to determine the map geometry to compare the models with examples of natural structures. The experimental models showed many similarities with conceptual models but also showed more details and a few significant differences. Typically, divergent transfer zones are narrower than convergent transfer zones, for the same initial spacing between basement faults. The differences between the different initial fault configurations (approaching, laterally offset, or overlapping) are the degree of interaction of the secondary faults, the amount of overlap between the fault zones, and in some cases, the width of the transfer zone. The main faults propagate laterally and upward and curve in the direction of dip of the faults, so that the faults curve toward each other in convergent transfer zones, away from each other in divergent transfer zones, and in the same direction in synthetic transfer zones. A primary difference with schematic models is the significant component of extensional fault propagation folding (drape folding), accompanied by secondary faulting within the sedimentary cover, especially in the early stages of fault propagation. Therefore, all three types of transfer zones are characterized by significant folding and related variations in the shapes of structures. The transfer zones are marked by a progressive change in relief from the footwall to the hanging wall, resulting in a saddle-shaped geometry. The hanging walls of the faults are marked by a gentle flexure or rollover into the fault, with the amount of flexure increasing with fault throw away from the fault tip. The geometries and fault patterns of the experimental structures match some of the observations in natural structures and also provide predictive analogs for interpretation of surface and subsurface structures and the delineation of structural traps in rift basins.
Desktop /Portals/0/PackFlashItemImages/WebReady/Experimental-models-of-transfer-zones-in-rift.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3723 Bulletin Article

See Also: CD DVD

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4561 CD-DVD

See Also: Field Seminar

Shark Bay was declared a World Heritage area in the 1980s because of its unique geo-biological attributes, particularly in hypersaline basins, in areas which remain pristine today. This field trip provides a once in a lifetime opportunity to observe stromatolites in their stunning present day environment at Hamelin Pool, Shark Bay. As part of this special trip, access will be provided to areas not normally open to the public. You will be able to access and inspect modern day intertidal to subtidal microbial systems.
Desktop /Portals/0/PackFlashItemImages/WebReady/FS-1-Shark-Bay-Western-Australia-Sediments-and-Stromatolites.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 18140 Field Seminar