Riding the Waves: Getting S- When Getting P-

American Association of Petroleum Geologists (AAPG)

For decades, seismic analysis of subsurface geology has been limited to information that can be extracted from compressional-wave (P-wave) seismic data – but numerous geophysicists are now becoming aware of the advantages of combining shear-wave (S-wave) data with P-wave data.

The advantage, simply stated, is this: A broader range of rock and fluid properties can be estimated than what can be estimated with P-wave data alone.

The purpose of this article is to explain that it may be easier and less costly than you think to acquire S-wave data across onshore prospect areas when conventional P-wave seismic data are being collected.


Seismic sources used to acquire P-wave data across land-based prospects always apply a vertical force vector to the Earth. This statement is true for vibrators (the most common land-based P-wave source), explosives in shot holes and the various types of weight droppers and thumpers that have been utilized to acquire P-wave data over the years.

When a vertical impulse is applied to the Earth, two types of wavefields radiate away from the impact point – a P wavefield, and an SV (vertical shear) wavefield.

(A minor amount of SH – horizontal shear – energy also radiates away from the application point of a vertical impact, but this S-wave mode is weak and will not be considered in this discussion.)

Two examples of the relative energy that is distributed between a downgoing P wavefield and a downgoing SV wavefield produced as the result of a vertical impulse are illustrated onfigure 1. These P and SV radiation patterns correspond to different values of Poisson’s ratio for the Earth medium where the vertical impulse is applied.

A surprising principle to many people, including geophysicists, is that although a vertical-impact source is considered to be a P-wave source, the SV wavefield produced by such a source is often more robust than is its companion P wavefield.

For example, to determine the relative strengths of the downgoing P and SV wavefields at any take-off angle from the source station, one has to only draw a raypath, such as dash-line SAB on figure 1, oriented at take-off angle Φ. The points where this line intersects the P and SV radiation pattern boundaries define the relative strengths of the P and SV modes in that illumination direction.

For take-off angle Φ in this example, the strength (B) of the SV mode is larger than the strength (A) of the P mode.


A real-data example that illustrates this physics is displayed as figure 2. This example is a vertical seismic profile (VSP), which is one of the best measurements that can be made to understand seismic wave-propagation physics.

Here, both a downgoing P wave and a downgoing SV wave are produced by the vertical vibrator that was used as the energy source. Either wave mode, P or SV, can be used to image geology. Both modes are embedded in the data, but people tend to utilize only the P-wave mode.

How can we begin to take advantage of the SV-wave data that conventional land-based P-wave seismic sources produce? Only two alterations have to be made in conventional seismic field practice:

  • Deploy three-component geophones rather than single-component geophones.
  • Lengthen the data traces to ensure that SV reflections produced by the downgoing SV wavefield are recorded. Because SV velocity is less than P-wave velocity by a factor of two or more, SV data traces need to be at least twice as long as the traces used to define P-wave data.

These alterations can be done with minimal cost, and the potential benefits of acquiring two S-waves (P-SV or converted shear, and SV-SV or direct shear) rather than just P-wave data can be immense.

Our profession needs to utilize longer data traces when acquiring all land-based seismic data.

Comments (0)

 

What Can I Do?

Add Item

Enter Notes:
 
* You must be logged in to name and customize your collection.
Recommend Recommend
Printable Version Printable Version Email to a friend Email to a friend

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.

VIEW COLUMN ARCHIVES

Image Gallery

See Also: ACE Program Paper

ACE Program Paper Four Seasons Ballroom 2 & 3 Reservoir Induced Seismicity near Heron and El Vado Reservoirs, Northern New Mexico, and Implications for Fluid Injection Within the San Juan Basin Reservoir Induced Seismicity near Heron and El Vado Reservoirs, Northern New Mexico, and Implications for Fluid Injection Within the San Juan Basin Desktop /Portals/0/images/ace/2015/luncheon heros/ace2015-tp6-environment.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 15499
ACE Program Paper Exhibition Hall Geologically Constrained Seismic Characterization and 3-D Reservoir Modeling of Mississippian Reservoirs, North Central Anadarko Shelf, Oklahoma Geologically Constrained Seismic Characterization and 3-D Reservoir Modeling of Mississippian Reservoirs, North Central Anadarko Shelf, Oklahoma Desktop /Portals/0/images/ace/2015/luncheon heros/ace2015-tp3-evaporites.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 15667

See Also: CD DVD

CD-DVD Gulf of Mexico Petroleum Systems: AAPG Bulletin Special Issue Gulf of Mexico Petroleum Systems: AAPG Bulletin Special Issue Desktop /remote/store-assets.aapg.org/img/products/DPpc1274_450.jpg?width=50&height=50&mode=pad&bgcolor=white&quality=90amp;encoder=freeimage&progressive=true&scale=both 22040

See Also: Explorer Article

Explorer Article By the way, ‘pre’ and ‘sub’ differ Advancements Push ‘Salt’ Plays Advancements Push ‘Salt’ Plays Desktop /Portals/0/PackFlashItemImages/WebReady/advancements-push-salt-plays-2010-02feb-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 2745

See Also: Explorer Geophysical Corner

Explorer Geophysical Corner Impedance Inversion’s Value in Interpretation Impedance Inversion’s Value in Interpretation Desktop /Portals/0/PackFlashItemImages/WebReady/impedance-Inversions-value-in-interpretation-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 20371