Riding the Waves: Getting S- When Getting P-

For decades, seismic analysis of subsurface geology has been limited to information that can be extracted from compressional-wave (P-wave) seismic data – but numerous geophysicists are now becoming aware of the advantages of combining shear-wave (S-wave) data with P-wave data.

The advantage, simply stated, is this: A broader range of rock and fluid properties can be estimated than what can be estimated with P-wave data alone.

The purpose of this article is to explain that it may be easier and less costly than you think to acquire S-wave data across onshore prospect areas when conventional P-wave seismic data are being collected.

Seismic sources used to acquire P-wave data across land-based prospects always apply a vertical force vector to the Earth. This statement is true for vibrators (the most common land-based P-wave source), explosives in shot holes and the various types of weight droppers and thumpers that have been utilized to acquire P-wave data over the years.

When a vertical impulse is applied to the Earth, two types of wavefields radiate away from the impact point – a P wavefield, and an SV (vertical shear) wavefield.

(A minor amount of SH – horizontal shear – energy also radiates away from the application point of a vertical impact, but this S-wave mode is weak and will not be considered in this discussion.)

Two examples of the relative energy that is distributed between a downgoing P wavefield and a downgoing SV wavefield produced as the result of a vertical impulse are illustrated onfigure 1. These P and SV radiation patterns correspond to different values of Poisson’s ratio for the Earth medium where the vertical impulse is applied.

A surprising principle to many people, including geophysicists, is that although a vertical-impact source is considered to be a P-wave source, the SV wavefield produced by such a source is often more robust than is its companion P wavefield.

For example, to determine the relative strengths of the downgoing P and SV wavefields at any take-off angle from the source station, one has to only draw a raypath, such as dash-line SAB on figure 1, oriented at take-off angle Φ. The points where this line intersects the P and SV radiation pattern boundaries define the relative strengths of the P and SV modes in that illumination direction.

For take-off angle Φ in this example, the strength (B) of the SV mode is larger than the strength (A) of the P mode.

A real-data example that illustrates this physics is displayed as figure 2. This example is a vertical seismic profile (VSP), which is one of the best measurements that can be made to understand seismic wave-propagation physics.

Here, both a downgoing P wave and a downgoing SV wave are produced by the vertical vibrator that was used as the energy source. Either wave mode, P or SV, can be used to image geology. Both modes are embedded in the data, but people tend to utilize only the P-wave mode.

How can we begin to take advantage of the SV-wave data that conventional land-based P-wave seismic sources produce? Only two alterations have to be made in conventional seismic field practice:

  • Deploy three-component geophones rather than single-component geophones.
  • Lengthen the data traces to ensure that SV reflections produced by the downgoing SV wavefield are recorded. Because SV velocity is less than P-wave velocity by a factor of two or more, SV data traces need to be at least twice as long as the traces used to define P-wave data.

These alterations can be done with minimal cost, and the potential benefits of acquiring two S-waves (P-SV or converted shear, and SV-SV or direct shear) rather than just P-wave data can be immense.

Our profession needs to utilize longer data traces when acquiring all land-based seismic data.

Comments (0)


Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.


Image Gallery

See Also: Book

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 16538 Book

See Also: Bulletin Article

The presence of hydrocarbon-bearing sandstones within the Eocene of the Forties area was first documented in 1985, when a Forties field (Paleocene) development well discovered the Brimmond field. Further hydrocarbons in the Eocene were discovered in the adjacent Maule field in 2009. Reservoir geometry derived from three-dimensional seismic data has provided evidence for both a depositional and a sand injectite origin for the Eocene sandstones. The Brimmond field is located in a deep-water channel complex that extends to the southeast, whereas the Maule field sandstones have the geometry of an injection sheet on the updip margin of the Brimmond channel system with a cone-shape feature emanating from the top of the Forties Sandstone Member (Paleocene). The geometry of the Eocene sandstones in the Maule field indicates that they are intrusive and originated by the fluidization and injection of sand during burial. From seismic and borehole data, it is unclear whether the sand that was injected to form the Maule reservoir was derived from depositional Eocene sandstones or from the underlying Forties Sandstone Member. These two alternatives are tested by comparing the heavy mineral and garnet geochemical characteristics of the injectite sandstones in the Maule field with the depositional sandstones of the Brimmond field and the Forties sandstones of the Forties field.

The study revealed significant differences between the sandstones in the Forties field and those of the Maule and Brimmond fields), both in terms of heavy mineral and garnet geochemical data. The Brimmond-Maule and Forties sandstones therefore have different provenances and are genetically unrelated, indicating that the sandstones in the Maule field did not originate by the fluidization of Forties sandstones. By contrast, the provenance characteristics of the depositional Brimmond sandstones are closely comparable with sandstone intrusions in the Maule field. We conclude that the injectites in the Maule field formed by the fluidization of depositional Brimmond sandstones but do not exclude the important function of water from the huge underlying Forties Sandstone Member aquifer as the agent for developing the fluid supply and elevating pore pressure to fluidize and inject the Eocene sand. The study has demonstrated that heavy mineral provenance studies are an effective method of tracing the origin of injected sandstones, which are increasingly being recognized as an important hydrocarbon play.

Desktop /Portals/0/PackFlashItemImages/WebReady/constraining-the-origin-of-reservoirs-formed.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 7966 Bulletin Article

See Also: CD DVD

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4511 CD-DVD

See Also: Field Seminar

The modern carbonate-evaporite depositional environments along the Abu Dhabi shoreline and offshore Abu Dhabi belong to the few areas of the world where the geoscientist can observe the interplay between carbonate and evaporite sedimentation.
Desktop /Portals/0/PackFlashItemImages/WebReady/fs-field-trip-to-the-modern-sabkha-environment-abu-dhabi-11nov-2015-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 20582 Field Seminar

See Also: Learn! Blog

Learn the latest technologies being successfully applied in the main unconventional plays, and how the knowledge can be applied to other plays world wide.

Desktop /Portals/0/PackFlashItemImages/WebReady/sc-unconventionals-update.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 12178 Learn! Blog