Ready for the Future – In 131 Years?

Larry Nation, AAPG’s communications director, sent me a press release about a study conducted by two University of California-Davis civil and environmental engineers, recently published in Environmental Science & Technology. Their study concluded that global oil will run out 90 years before the technology to replace gasoline and diesel fuel is ready.*

Their study, to quote the abstract, “establishes a probabilistic theoretical approach based on market expectations reflected in prices of publicly traded securities to estimate the time horizon until the appearance of new technologies related to replacement of nonrenewable resources, for example, crude oil and oil products.”

They use the market capitalization of oil and alternative companies, the dividends paid by the oil companies and oil reserve replacement rates to determine when the technology will be available to replace gasoline and diesel fuel as transportation fuels.

Their calculations indicate the time when “renewable replacement fuels can be self-sustaining, at least from a market perspective,” is 131 years in the future.

To many of us, their conclusion would seem faulty – even ridiculous. Biodiesel is already available and it could likely be commercially available within 131 years. It appears the technology for potentially commercial renewable fuels already exists.

Nonetheless, I think anyone who dares to speculate about technology development that far in the future deserves some consideration.

A simple calculation indicates the authors expect the world to run out of oil in 41 years. The world’s current rate of crude oil consumption is approximately 30 billion barrels of oil per year; therefore, they are using an estimate of approximately 1,230 billion barrels of world crude oil reserves.

This estimate is not very different from BP’s published world oil reserves of 1,333.1 billion barrels as of 2009 (Statistical Review of World Energy 2010). By BP’s analysis, we have a reserve life of 44 years at current production rates.

I applaud the authors’ desire to take a long-term and sustainable view of the world’s energy situation. However, what the authors fail to appreciate is that, based on BP’s statistics, the world has had an average estimated crude oil reserve life of 42 years every year since 1990.

During that period, approximately 540 billion barrels of crude oil have been produced. Through discoveries and reserve additions to existing fields, we have managed to maintain a crude oil reserve life of about 42 years throughout that period.

Granted, crude oil is a finite resource, but the authors do not seem to grasp the difference between oil reserves and oil resource.

If their estimate of 131 years to development of a new commercial transportation technology is applied to the replacement of the internal combustion engine, that would seem to be a little more plausible. Electric vehicles are currently available for short trips, but we still generate 70 percent of our electricity from coal and natural gas. At this point, electric vehicles do not run on a renewable energy source. The biggest hurdles to the development of a commercial transportation system based on renewable fuels are long-haul trucks, trains and airplanes.

I hope the world will have that technology in 131 years. Until that occurs, crude oil and natural gas will continue to be an integral part of our energy requirements.

*Nataliya Malyshkina and Deb Niemeier; Future Sustainability Forecasting by Exchange Markets: Basic Theory and Application; Environmental Science and Technology (American Chemical Society); Nov. 8, 2010

Comments (0)


President's Column - David G. Rensink

David G. Rensink, AAPG President (2010-11), is a consultant out of Houston. He retired from Apache Corp in 2009.

President's Column

AAPG Presidents offer thoughts and information about their experiences for the Association. 


See Also: Bulletin Article

Sandstone pressures follow the hydrostatic gradient in Miocene strata of the Mad Dog field, deep-water Gulf of Mexico, whereas pore pressures in the adjacent mudstones track a trend from well to well that can be approximated by the total vertical stress gradient. The sandstone pressures within these strata are everywhere less than the bounding mudstone pore pressures, and the difference between them is proportional to the total vertical stress. The mudstone pressure is predicted from its porosity with an exponential porosity-versus-vertical effective stress relationship, where porosity is interpreted from wireline velocity. Sonic velocities in mudstones bounding the regional sandstones fall within a narrow range throughout the field from which we interpret their vertical effective stresses can be approximated as constant. We show how to predict sandstone and mudstone pore pressure in any offset well at Mad Dog given knowledge of the local total vertical stress. At Mad Dog, the approach is complicated by the extraordinary lateral changes in total vertical stress that are caused by changing bathymetry and the presence or absence of salt. A similar approach can be used in other subsalt fields. We suggest that pore pressures within mudstones can be systematically different from those of the nearby sandstones, and that this difference can be predicted. Well programs must ensure that the borehole pressure is not too low, which results in borehole closure in the mudstone intervals, and not too high, which can result in lost circulation to the reservoir intervals.

Desktop /Portals/0/PackFlashItemImages/WebReady/subsalt-pressure-prediction-in-the-miocene.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 5774 Bulletin Article

See Also: DL Abstract

Carbonate submarine slopes have a tendency to be steeper than their siliciclastic counterparts, an observation that is generally attributed to microbial binding and early cementation in carbonates. However, careful comparison of gross development, curvature, and angle of dip in similar settings shows surprising similarities between siliciclastic and carbonate slopes. This paper presents examples of the various systems from seismic and outcrop and proposes a workflow that facilitates more systematic and improved prediction of carbonate and siliciclastic depositional systems ahead of drill.

Desktop /Portals/0/PackFlashItemImages/WebReady/so-different-yet-so-similar-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 11684 DL Abstract

See Also: Industry Meeting

The event is scheduled to take place in Yangon, from 19-20 November 2015. The three societies are very pleased to work together and bring a quality geoscience event to this rather under-explored country that many call the “hottest hotspot” for hydrocarbon exploration in Asia and maybe even the world.

Desktop /Portals/0/PackFlashItemImages/WebReady/im-2015-hero-yangon-conference.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 12212 Industry Meeting

See Also: Online e Symposium

The goal of this e-symposium is to review the status of the Mexican upstream sector, and to provide a review of the most prolific and prospective areas in Mexico, with a focus on opportunities for international participation, given the upcoming energy reform in Mexico. 
Desktop /Portals/0/PackFlashItemImages/WebReady/esymp-mexicos-oil-and-gas-history-new-discoveries-opportunities-and-energy-reform-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 10831 Online e-Symposium

This e-symposium introduces you to the practical benefits of thermal profiling for a variety of unconventional oil and gas projects, including tight gas sands, oil shale, low-gravity oil.

Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-how-tight-is-your-gas.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 1443 Online e-Symposium