When All Data Are Not Created Equally

Contributors: Satinder Chopra

Tidewater areas can be difficult places to acquire consistent-quality seismic data, because different sources have to be used across exposed land surfaces than what are used across shallow-water areas.

Typically, explosives are used in shot holes in the onshore portion of a tidewater prospect, whereas environmental regulations may require that an air-gun source be used in shallow-water areas.

These two seismic sources produce different basic wavelets – and profiles produced with explosives and air guns rarely tie in an optimal manner at common image coordinates without using wavelet-shaping algorithms to create equivalent reflection character across targeted intervals.


An example of using an explosive source and an air-gun source across a Louisiana tidewater area is documented as figures 1 and 2. This shallow-water test line was recorded twice because, at this location, explosive sources were allowed.

For one profile, the source was a 30-pound (13.6-kilogram) charge positioned at a depth of 135 feet (41 meters) at each source station.

For the second data acquisition along the same profile, the source was an array of four air guns with a combined volume of 920 in3, and eight air-gun pops were summed at each source station.

Considerable processing effort was expended to make the final reflection character identical on each test line. The data illustrated as figure 1 show the results of the data processing.

The frequency content of the two profiles is approximately the same, but wavelet character is not identical at the junction point (station 165). In this instance, the interpreter responsible for this prospect decided that the reflection character expressed by the explosive source was preferred rather than the wavelet response shown by the air-gun source.

The challenge was that in neighboring tideland areas, regulations required that an air-gun source be used in water-covered areas – shot-hole explosives could not be used in shallow water as they had been across this initial test site, and a method had to be developed that would allow air-gun-source data to be used in conjunction with explosive-source data acquired across adjacent exposed-land areas.

Said another way, the problem was to create a basic wavelet in air-gun-generated data that was equivalent to the basic wavelet embedded in explosive-source data.

This type of problem has to be solved by data-processing procedures, not by data-acquisition techniques.


An approach used by many data processors to ensure that equivalent basic wavelets exist in two seismic profiles acquired with different sources is to calculate numerical cross-equalization operators that convert the phase and frequency spectra of source A to be equivalent to the phase and frequency spectra of source B.

This technique was applied to the tidewater seismic data illustrated on figure 1 by using data from the image trace at station 153 to calculate cross-equalization operators that converted the phase/frequency spectra of the air-gun data to the spectra of the explosive-source data.

The result is exhibited as figure 2.

The wavelet character of the profiles now agrees better at the tie point so that common horizons, sequence boundaries, and facies character can be interpreted on both profiles with greater confidence.


The example discussed here is from a tidewater area where operating and environmental constraints forced different sources to be used on land-based and water-based seismic lines.

The concept of numerical equalization of the basic wavelets embedded in any grid of intersecting 2-D (or 3-D) data, however, applies to a variety of onshore and offshore areas where people have access to overlapping legacy seismic data that have been acquired by different companies at different times and with different energy sources.

Comments (0)

 

Division Column-DEG Jeffrey Paine

Jeffrey Paine is DEG President for 2014-15.

Geophysical Corner

Geophysical Corner - Satinder Chopra
Satinder Chopra, chief geophysicist (reservoir), at Arcis Seismic Solutions, Calgary, Canada, began serving as the editor of the Geophysical Corner column in 2012.

Division Column-DEG David Vance

David Vance is principal scientist, ARCADIS-US Inc., Midland, Texas, and is a member of the DEG CO2 Sequestration Committee.  

Division Column-DEG Tom J. Temples

Tom J. Temples is DEG President.

Division Column-DEG Bruce Smith

Bruce Smith is a DEG member and is with the Crustal Geophysics and Geochemistry Science Center of the U.S. Geological Survey in Denver.

Division Column-DEG Doug Wyatt

Doug Wyatt, of Aiken, S.C., is director of science research for the URS Corporation Research and Engineering Services contract to the USDOE National Energy Technology Laboratory. He also is a member of the DEG Advisory Board for the AAPG Eastern Section.

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.

VIEW COLUMN ARCHIVES

See Also: Book

Desktop /Portals/0/PackFlashItemImages/WebReady/book-m96-Uncertainty-Analysis-and-Reservoir-Modeling.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4000 Book

See Also: Bulletin Article

Jurassic deposition in the Maghrebian tethys was governed by eustasy and rifting. Two periods were delineated: (1) a carbonate shelf (Rhaetian–early Pliensbachian) and (2) a platform-basin complex (early Pliensbachian–Callovian). The carbonate shelf evolved in four stages, generating three sedimentary sequences, J1 to J3, separated by boundary sea level falls, drawdown, exposure, and local erosion. Sediment facies bear evidence of sea level rises and falls. Lateral changes in lithofacies indicate shoaling and deepening upward during the Sinemurian. A major pulse of rifting with an abrupt transition from carbonate shelf to pelagic basin environments of deposition marks the upper boundary of the lower Pliensbachian carbonate shelf deposits. This rifting episode with brittle fractures broke up the Rhaetian–early Pliensbachian carbonate shelf and has created a network of grabens, half grabens, horsts, and stacked ramps. Following this episode, a relative sea level rise led to pelagic sedimentation in the rift basins with local anoxic environments that also received debris shed from uplifted ramp crests. Another major episode spanning the whole early Pliensbachian–Bajocian is suggested by early brecciation, mass flows, slumps, olistolites, erosion, pinch-outs, and sedimentary prisms. A later increase in the rates of drifting marked a progress toward rift cessation during the Late Jurassic. These Jurassic carbonates with detrital deposits and black shales as the source rocks in northeastern Tunisia may define interesting petroleum plays (pinch-out flanking ramps, onlaps, and structurally upraised blocks sealed inside grabens). Source rock maturation and hydrocarbon migration began early in the Cretaceous and reached a maximum during the late Tortonian–Pliocene Atlassic orogeny.
Desktop /Portals/0/PackFlashItemImages/WebReady/a-transition-from-carbonate-shelf-to-pelagic.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3766 Bulletin Article
Isolated carbonate buildups (ICBs) are commonly attractive exploration targets. However, identifying ICBs based only on seismic data can be difficult for a variety of reasons. These include poor-quality two-dimensional data and a basic similarity between ICBs and other features such as volcanoes, erosional remnants, and tilted fault blocks. To address these difficulties and develop reliable methods to identify ICBs, 234 seismic images were analyzed. The images included proven ICBs and other features, such as folds, volcanoes, and basement highs, which may appear similar to ICBs when imaged in seismic data. From this analysis, 18 identification criteria were derived to distinguish ICBs from non-ICB features. These criteria can be grouped into four categories: regional constraints, analysis of basic seismic geometries, analysis of geophysical details, and finer-scale seismic geometries. Systematically assessing the criteria is useful because it requires critical evaluation of the evidence present in the available data, working from the large-scale regional geology to the fine details of seismic response. It is also useful to summarize the criteria as a numerical score to facilitate comparison between different examples and different classes of ICBs and non-ICBs. Our analysis of scores of different classes of features suggests that the criteria do have some discriminatory power, but significant challenges remain.
Desktop /Portals/0/PackFlashItemImages/WebReady/methods-for-identification-of-isolated-carbonate.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3767 Bulletin Article

See Also: CD DVD

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4019 CD-DVD

See Also: Online e Symposium

Gas hydrates, ice-like substances composed of water and gas molecules (methane, ethane, propane, etc.), occur in permafrost areas and in deep water marine environments.

Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-predicting-gas-hydrates.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 1441 Online e-Symposium