The Final Touch: Attributes Prove Their Worth

Contributors: Kurt Marfurt

Seismic stratigraphy requires interpreters to analyze the geometrical configurations and termination patterns of seismic reflection events.

Maps of distinct families of these reflection behaviors usually can be interpreted to determine where distinct depositional processes occur across the mapped area. Reflection patterns such as toplap, onlap, downlap and erosional truncation are used as architectural elements to reconstruct the depositional environments imaged by seismic data.

Using such seismic-depositional environment maps – together with well control and modern and paleo analogues – allows interpreters to produce probability maps of “most-likely” lithofacies.

Although coherence and curvature are excellent for delineating some seismic stratigraphic features, they have limited value in imaging classic seismic stratigraphy features such as onlap, progradation and erosional truncation.

Here we examine how newer volumetric attributes facilitate seismic stratigraphic analysis of large 3-D seismic volumes.

Reflection Convergence

Changes in reflector dip, reflection terminations, erosional unconformities and angular unconformities are relatively easy to recognize by visual inspection of vertical seismic sections.

To translate visual recognition of these features to a numerical-recognition process, a first step is to compute volumetric estimates of vector dip at each data sample.

Next, the mean and standard deviations of these vector dips are calculated in small windows about each data sample. Conformable reflections will have small standard deviations of their reflection dips, while non-parallel events such as angular unconformities will have high standard deviation.

In 2000, Barnes computed a vertical derivative of apparent dip along a user-defined azimuth, and used that calculation to define whether reflections diverged or converged. In this methodology, converging reflections show a decreasing change in dip while divergent reflections show increasing change in dip.

Marfurt and Rich (2010) built upon this method and generated 3-D estimates of reflector-convergence azimuths and magnitudes.

In order to represent the vector nature of reflector convergence in different azimuthal directions, they employed a 2-D color wheel to indicate reflector dip and azimuth.

Reflection Rotation

Compressive deformation and wrench faulting cause fault blocks to rotate. The extent of rotation depends on the size of the block, the lithology and the stress levels.

As individual fault blocks undergo rotation, higher stresses and fracturing may occur at block edges. Natural fractures are partially controlled by such fault-block rotation and partially depend on how individual fault segments intersect.

Fault-block rotation also can control depositional processes by providing increased accommodation space in subsiding areas and enhancing erosional processes in uplifted areas.

In view of the importance of fault block rotation, interpreters need a seismic attribute that allows the rotation of fault blocks to be better analyzed.


In figure 1, we show the behavior of reflection convergence for a channel with and without levee/overbank deposits for four scenarios:

Deposition within the channel that shows no significant convergence.

Deposition within the channel such that the west channel margin converges toward the west and the east channel margin converges toward the east.

Deposited sediments within the channel that do not converge at the margins, and levee/overbank deposits that converge toward the channel (west deposits converge toward the east and vice-versa).

Strata within the channel and levee/overbank deposits that converge to the channel margins.

We carried out the computation of both reflector convergence and reflection rotation for a suite of 3-D seismic volumes from Alberta, Canada. Figure 2 shows a 3-D chair view of a coherence time slice spanning a channel system, co-rendered with reflector-convergence attributes.

Using the scenarios presented in figure 1, our interpretation of the zone within the yellow dotted ellipse is that levee/overbank deposits converge toward the channel margin to the northeast (magenta) and southwest (green).

In figure 3 we show a time slice through a reflector-rotation volume. Notice the horst and graben features show considerable contrast and can be interpreted as distinct geologic regimes.

An equivalent display is shown in figure 4, with a time slice through a reflector-convergence attribute. In this case, the thickening and thinning of reflectors appear to be controlled by rotated fault blocks.


Application of two attributes, namely reflector convergence and reflector rotation, are shown for two different 3-D seismic volumes. These attributes provide complementary information to that provided by amplitude, coherence and curvature attributes.

Reflector-convergence measures the magnitude and direction of thickening and thinning of reflections.

Reflector rotation about faults is demonstrated to be valuable for mapping wrench faults.

We thank Arcis Corporation for permission to show the data examples, as well as for the permission to publish this work.

Comments (0)


Geophysical Corner

Geophysical Corner - Satinder Chopra
Satinder Chopra, award-winning chief geophysicist (reservoir), at Arcis Seismic Solutions, Calgary, Canada, and a past AAPG-SEG Joint Distinguished Lecturer began serving as the editor of the Geophysical Corner column in 2012.

Geophysical Corner - Kurt Marfurt
AAPG member Kurt J. Marfurt is with the University of Oklahoma, Norman, Okla.

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.


See Also: Bulletin Article

Volumetric restoration can provide crucial insights into the structural evolution of three-dimensional (3-D) petroleum systems. A major limitation to its widespread application is the need to include complex architectures and realistic mechanics such as flexural slip. We apply an implicit approach that allows for, including unconformities, thin and/or pinched-out layers in the models but that cannot explicitly localize slip along horizons. To take advantage of this approach while accounting for flexural slip in 3-D restoration, we investigate new geomechanical properties. We consider flexural slip folding as a result of stacked rigid and thin weak layers, which can be modeled using transversely isotropic properties. We compare restorations of an anticline using transversely isotropic properties, isotropic properties, and a stack of rigid isotropic layers with nonfrictional slip between the layers. Our results show that transversely isotropic properties reasonably approximate flexural slip folding. We use these new tools to model the evolution of a complex system located in the Niger Delta toe. The system includes a detachment fold, a fault-bend fold, and a structural wedge formed in series. Growth stratigraphy and erosional surfaces delimit the kinematics of deformation. Regional erosive surfaces, 3-D gradients of fault slip, and vertical variations in mechanical strength motivated the use of our new restoration techniques. Restoring two growth units results not only in reinforcing the interpretation that the area is behaving as a deforming thrust sheet at critical taper, but also in highlighting coeval activity on both the hinterland structures and the toe of the thrust belt.
Desktop /Portals/0/PackFlashItemImages/WebReady/Handling-natural-complexity-in-three-dimensional.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3564 Bulletin Article

Sequence stratigraphy and coal cycles based on accommodation trends were investigated in the coal-bearing Lower Cretaceous Mannville Group in the Lloydminster heavy oil field, eastern Alberta. The study area is in a low accommodation setting on the cratonic margin of the Western Canada sedimentary basin. Geophysical log correlation of coal seams, shoreface facies, and the identification of incised valleys has produced a sequence-stratigraphic framework for petrographic data from 3 cored and 115 geophysical-logged wells. Maceral analysis, telovitrinite reflectance, and fluorescence measurements were taken from a total of 206 samples. Three terrestrial depositional environments were interpreted from the petrographic data: ombrotrophic mire coal, limnotelmatic mire coal, and carbonaceous shale horizons. Accommodation-based coal (wetting- and drying-upward) cycles represent trends in depositional environment shifts, and these cycles were used to investigate the development and preservation of the coal seams across the study area.

The low-accommodation strata are characterized by a high-frequency occurrence of significant surfaces, coal seam splitting, paleosol, and incised-valley development. Three sequence boundary unconformities are identified in only 20 m (66 ft) of strata. Coal cycle correlations illustrate that each coal seam in this study area was not produced by a single peat-accumulation episode but as an amalgamation of a series of depositional events. Complex relations between the Cummings and Lloydminster coal seams are caused by the lateral fragmentation of strata resulting from the removal of sediment by subaerial erosion or periods of nondeposition. Syndepositional faulting of the underlying basement rock changed local accommodation space and increased the complexity of the coal cycle development.

This study represents a low-accommodation example from a spectrum of stratigraphic studies that have been used to establish a terrestrial sequence-stratigraphic model. The frequency of changes in coal seam quality is an important control on methane distribution within coalbed methane reservoirs and resource calculations in coal mining. A depositional model based on the coal cycle correlations, as shown by this study, can provide coal quality prediction for coalbed methane exploration, reservoir completions, and coal mining.

Desktop /Portals/0/PackFlashItemImages/WebReady/accommodation-based-coal-cycles-and-significant.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 5686 Bulletin Article

See Also: CD DVD

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3979 CD-DVD

See Also: DL Abstract

The linkage of process to stratigraphic expression is based primarily upon the observation that modern depositional patterns replicate in the ancient. Uniformitarianism implies that this commonality in pattern translates to a commonality in causal mechanism.
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-Time-in-the-rock-A-fluvial-view-toward-preservation-of-time-and-process-in-the-stratigraphic-record-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 22907 DL Abstract

See Also: Online Certificate Course

Unconventional Resources is an online course that enables participants to learn about shale gas, shale oil and coalbed methane.

Desktop /Portals/0/PackFlashItemImages/WebReady/oc-cc-unconventional-resources.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 1473 Online Certificate Course