When Thin is In, Enhancement Helps

Expanding the frequency bandwidth of surface seismic data is an unending quest for geophysicists, because increased seismic resolution is essential for extracting stratigraphic detail from seismic images.

While both vertical resolution and horizontal resolution are important for interpreting small geologic features on seismic data, we focus our attention here on vertical resolution – recognizing that migration procedures usually enhance horizontal resolution.

If the frequency spectrum of a seismic wavelet is centered around 30 Hz, which is usually achievable, and the seismic interval velocity is greater than 3000 m/s, reservoirs having a thickness less than 25 meters may not be resolved. “Not resolved” means there is no distinct reflection peak or trough centered on the top and bottom interfaces of the reservoir unit.

This interval thickness, where seismic data can no longer position a distinct reflection peak or trough at the top and base of the interval, is called “tuning thickness.”

Because numerous stratigraphic targets have thicknesses of 10 meters or less – which is thinner than tuning thickness for most seismic profiles – frequency enhancement procedures need to be applied to seismic data to study reservoir targets in this “thinner than tuning thickness” domain.


One post-stack spectral inversion method that resolves thin layers having a thickness less than tuning thickness was published in 2005 (contact the authors for the reference). This method is driven by geological principles rather than by mathematical assumptions and uses spectral decomposition to enhance the frequency spectrum local to a thin-bed unit.

This spectral, or thin-bed, reflectivity inversion outputs a reflectivity series, and the apparent resolution of the inversion product is superior to the resolution of the input seismic data used to generate the reflectivity response.

Applications of this method in deconvolving complex seismic interference patterns are changing the mindset of many seismic interpreters, because the technique shows stratigraphic patterns with such remarkable detail.

The method consists of the following steps:

  1. A set of time-varying and space-varying wavelets is estimated from the seismic data.

For this purpose, it is good to have well control data to aid in selecting optimal space and time dependencies that should be expressed by these wavelets. In the absence of well control, a statistical method of wavelet estimation can be adopted.

  1. The wavelets estimated in step 1 are removed from the seismic data using an inversion procedure in which spectral constraints are derived on the basis of spectral decomposition procedures.

It is important to note that no Earth model or any assumption about stratigraphic layering is used in this inversion procedure – the trace-by-trace inversion procedure requires no starting geologic model and has no lateral continuity constraints.

Figure 1 shows a comparison of a segment of a seismic section from Alberta, Canada, before and after reflectivity inversion. After reflectivity inversion, more reflection detail can be seen, and faults are shown with improved clarity.

Once thin-bed reflectivity is derived from an input seismic volume – using, for example, a wavelet derived from an existing well – an interpreter can determine the amount of uncertainty involved in the inversion process by using a blind-well test.

Our experience with such exercises suggests that thin-bed spectral inversion creates data that tie favorably with other wells positioned in the same 3-D seismic volume.

Figure 2 shows a comparison between a segment of an input seismic section (figure 2a) and an equivalent segment of thin-bed reflectivity that has been convolved with a bandpass wavelet that extends the high end of the frequency spectrum to 120 Hz (figure 2b). Enhanced resolution of the reflectivity section is indicated by the extra reflection cycles.

More individual reflection cycles can now be tracked, leading to more detailed interpretation of the data.


Seismic attributes are a great help in extracting geologic information and are widely used to map geologic features at many scales. Geologic information not revealed by conventional displays of seismic data can often be seen on displays of one or more attributes derived from the data.

As a result, there has been an explosive growth in the development and application of seismic attributes.

Attribute computation done on data with enhanced resolution proves to be particularly useful for mapping onlap and offlap patterns or other stratigraphic features, which facilitates the mapping of parasequences and the direction of sediment transport.

Figure 3 shows a comparison of a stratal slice through a coherence-attribute volume generated for both input seismic data and for enhanced-resolution data.

Notice the significant impact that enhanced resolution has on the coherence attribute, as evidenced by the increased lateral resolution of the channel system and by the improved faulting picture seen in figure 3b.

Conclusions

The thin-bed spectral inversion method discussed here is a novel way of removing wavelet effects from seismic data to create a pure reflectivity sequence. For data with a high signal-to-noise ratio, units with thicknesses less than the tuning thickness of the input data can be resolved.

The improved-resolution seismic data retrieved in the form of reflectivity data are not only important for more accurate geologic interpretations but prove to be advantageous for:

  • Convolving the extracted reflectivity with a wider bandpass wavelet (say 5-120 Hz) to provide a high-frequency section.
  • Providing high-frequency attributes that enhance lateral resolution of geologic features.

Comments (0)

 

Geophysical Corner

Geophysical Corner - Satinder Chopra
Satinder Chopra, award-winning chief geophysicist (reservoir), at Arcis Seismic Solutions, Calgary, Canada, and a past AAPG-SEG Joint Distinguished Lecturer began serving as the editor of the Geophysical Corner column in 2012.

Yong Xu are with Arcis Corp., Calgary, Canada

John P. Castagna is with the University of Houston/Fusion Geo Inc., Houston.

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.

VIEW COLUMN ARCHIVES


See Also: Book

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4457 Book

See Also: Bulletin Article

The geometries of clay smears produced in a series of direct shear experiments on composite blocks containing a clay-rich seal layer sandwiched between sandstone reservoir layers have been analyzed in detail. The geometries of the evolving shear zones and volume clay distributions are related back to the monitored hydraulic response, the deformation conditions, and the clay content and strength of the seal rock. The laboratory experiments were conducted under 4 to 24 MPa (580–3481 psi) fault normal effective stress, equivalent to burial depths spanning from less than approximately 0.8 to 4.2 km (0.5 to 2.6 mi) in a sedimentary basin. The sheared blocks were imaged using medical-type x-ray computed tomography (CT) imaging validated with optical photography of sawn blocks. The interpretation of CT scans was used to construct digital geomodels of clay smears and surrounding volumes from which quantitative information was obtained. The distribution patterns and thickness variations of the clay smears were found to vary considerably according to the level of stress applied during shear and to the brittleness of the seal layer. The stiffest seal layers with the lowest clay percentage formed the most segmented clay smears. Segmentation does not necessarily indicate that the fault seal was breached because wear products may maintain the seal between the individual smear segments as they form. In experiments with the seal layer formed of softer clays, a more uniform smear thickness is observed, but the average thickness of the clay smear tends to be lower than in stiffer clays. Fault drag and tapering of the seal layer are limited to a region close to the fault cutoffs. Therefore, the comparative decrease of sealing potential away from the cutoff zones differs from predictions of clay smear potential type models. Instead of showing a power-law decrease away from the cutoffs toward the midpoint of the shear zone, the clay smear thickness is either uniform, segmented, or undulating, reflecting the accumulated effects of kinematic processes other than drag. Increased normal stress improved fault sealing in the experiments mainly by increasing fault zone thickness, which led to more clay involvement in the fault zone per unit of source layer thickness. The average clay fraction of the fault zone conforms to the prediction of the shale gouge ratio (SGR) model because clay volume is essentially preserved during the deformation process. However, the hydraulic seal performance does not correlate to the clay fraction or SGR but does increase as the net clay volume in the fault zone increases. We introduce a scaled form of SGR called SSGR to account for increased clay involvement in the fault zone caused by higher stress and variable obliquity of the seal layer to the fault zone. The scaled SGR gives an improved correlation to seal performance in our samples compared to the other algorithms.
Desktop /Portals/0/PackFlashItemImages/WebReady/Three-dimensional-structure-of-experimentally-produced.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3722 Bulletin Article

Sequence stratigraphy and coal cycles based on accommodation trends were investigated in the coal-bearing Lower Cretaceous Mannville Group in the Lloydminster heavy oil field, eastern Alberta. The study area is in a low accommodation setting on the cratonic margin of the Western Canada sedimentary basin. Geophysical log correlation of coal seams, shoreface facies, and the identification of incised valleys has produced a sequence-stratigraphic framework for petrographic data from 3 cored and 115 geophysical-logged wells. Maceral analysis, telovitrinite reflectance, and fluorescence measurements were taken from a total of 206 samples. Three terrestrial depositional environments were interpreted from the petrographic data: ombrotrophic mire coal, limnotelmatic mire coal, and carbonaceous shale horizons. Accommodation-based coal (wetting- and drying-upward) cycles represent trends in depositional environment shifts, and these cycles were used to investigate the development and preservation of the coal seams across the study area.

The low-accommodation strata are characterized by a high-frequency occurrence of significant surfaces, coal seam splitting, paleosol, and incised-valley development. Three sequence boundary unconformities are identified in only 20 m (66 ft) of strata. Coal cycle correlations illustrate that each coal seam in this study area was not produced by a single peat-accumulation episode but as an amalgamation of a series of depositional events. Complex relations between the Cummings and Lloydminster coal seams are caused by the lateral fragmentation of strata resulting from the removal of sediment by subaerial erosion or periods of nondeposition. Syndepositional faulting of the underlying basement rock changed local accommodation space and increased the complexity of the coal cycle development.

This study represents a low-accommodation example from a spectrum of stratigraphic studies that have been used to establish a terrestrial sequence-stratigraphic model. The frequency of changes in coal seam quality is an important control on methane distribution within coalbed methane reservoirs and resource calculations in coal mining. A depositional model based on the coal cycle correlations, as shown by this study, can provide coal quality prediction for coalbed methane exploration, reservoir completions, and coal mining.

Desktop /Portals/0/PackFlashItemImages/WebReady/accommodation-based-coal-cycles-and-significant.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 5686 Bulletin Article

See Also: Learn! Blog

With the recent surge in new techniques and technology, as well as new plays put into production, a tremendous opportunity exists in both U.S. and international reservoirs to apply lessons learned to existing reservoirs in order to economically increase production and recoverable reserves.

Desktop /Portals/0/PackFlashItemImages/WebReady/revitalizing-reservoirs-key-questions-to-address-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 20935 Learn! Blog

See Also: Online e Symposium

The goal of this e-symposium is to provide an overview of the latest trends and technologies for water management for oil and gas drilling, completions, and production.

Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-successful-oilfield-water-management.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 1496 Online e-Symposium