About as esoteric as it gets

Researchers Are Thinking Small

American Association of Petroleum Geologists (AAPG)

“The data collected could ultimately enable a more efficient exploitation of hydrocarbon resources.”

Research efforts have yielded an array of tools to enable recovery of high volumes of hydrocarbons from targeted reservoirs that would have been nonproducible even in the relatively recent past.

Even so, the U.S. Department of Energy (DOE) reported in 2006 that about 67 percent of all U.S. oil remains in place after initial production. The agency estimated that possibly 25 percent of this oil can be recovered using conventional recovery techniques.

So, you ask, what’s an operator to do to find and recover all that leftover crude?

Research efforts funded by the Advanced Energy Consortium (AEC), which opened for business last year under the management of the Bureau of Economic Geology at the University of Texas at Austin, may ultimately provide the answer.

Smaller Is Big

The research objective of the AEC – which is comprised of oil industry leaders – is to locate and extract the billions of barrels of potentially available petroleum supply that remain in place following conventional recovery, according to consortium senior manager Sean Murphy.

Past AAPG president Scott Tinker serves as director of the organization.

To reach this lofty goal, the AEC program is funding scientific research in the infinitesimally small and relatively unexplored “nanorealm,” which previously had not been examined seriously by geoscientists or petroleum engineers.

According to John Ullo, senior manager at Schlumberger Doll Research Center in Boston: “… with the depletion of conventional hydrocarbon resources and the need to explore and recover from unconventional sources, the industry now must understand where much of the remaining hydrocarbons are trapped – at the nano scale.

“This could very well be the beginning of a new field of geosciences (called) “nano-petrophysics,” Ullo noted.

The AEC is focused specifically on the application of nano-scale technologies to the exploration and production of oil and gas, Murphy noted. He explained that nanotechnology is the field of science defined by the nanometer, noting that one nanometer is the equivalent of one-billionth of a meter.

No Hydrocarbon Left Behind

The extremely harsh downhole environments characteristic of many oil reservoirs are a particular challenge to nanotechnology application. Given the often excessive temperatures, pressures and corrosive fluids, conventional microelectronic sensors could not survive, much less operate and communicate.

This evolving technology is about as esoteric as it gets.

“The primary goal of the research consortium is to develop subsurface micro- and nano-sensors that can be injected into oil and gas wellbores,” Murphy said. “By virtue of their very small size, these sensors would migrate out of the wellbores and into and through pores of the surrounding geological structure to collect data about the physical and chemical characteristics of hydrocarbon reservoirs,” he said, “thereby helping to ‘illuminate’ these reservoirs in terms of additional information.

“The data collected could ultimately enable a more efficient exploitation of hydrocarbon resources,” he added.

This could be particularly beneficial for enhanced oil recovery (EOR) applications.

“In general we see nanotech as being the one big quantum step that companies can take in getting additional information about a reservoir, and then also in exploiting and enhancing recovery,” said David Zornes, technology adviser with the reservoir performance group at ConocoPhillips.

“The use of nanotech to deliver EOR chemicals is one big area that has a big future for companies,” Zornes said, “in that we can go after the 30-to-50 percent remaining oil that is located in typical reservoirs after they are produced via primary (methods) and then with a secondary waterflood.”

‘Small’ Jobs, Big Names

The roster of AEC members currently includes industry heavyweights BP America, Baker Hughes, ConocoPhillips, Halliburton Energy Services, Marathon Oil, Occidental Oil and Gas, Schlumberger, Shell and Total.

Rice University’s Smalley Institute for Nanoscale Science and Technology (SINST) is a key technical partner, and a team of SINST professors already has built and is lab-testing hydrophilic carbon clusters informally dubbed nano-reporters.

These nano-scale entities contain signaling molecules designed to detect oil, water, certain chemicals, etc. in the reservoir. Upon recovery from the reservoir, these nano-reporters will reveal significant information about what they saw, according to Rice professor and project principal investigator Jim Tour, an AAPG member. MORE INFO

A list of promising technologies that conceivably can be employed to better characterize reservoirs and aid in recovery efforts includes a variety of nanoallomorphs of carbon, magnetic nanoparticles, chemotaxic micro- and nanotube structures, and nanoexplosive materials, according to Murphy.

He noted the consortium is convinced that building on ongoing research in smart dust, medical imaging and nanofluidics fields could lead to breakthroughs in “illuminating” the hydrocarbon reservoir.

The AEC currently is funding 22 individual research contracts, and Murphy categorized the projects under way:

Passive sensors (molecular-based such at Tour’s nano-reporters).

  • Imaging (essentially contrast agents that assist in seeing something better).
  • Targeted imaging (specifically identify location of something, such as oil).
  • Inject and Retrieve (senses something but must be retrieved and analyzed in the lab).

Active sensors (traditional electronics-based sensors that must be shrunk to size).

  • MEMS scale (Micro-electro-mechanical systems) – currently are too large to fit into pores and fractures.
  • NEMS scale (Nano-electro-mechanical systems): targeting 100-1,000 nm scale devices.

Studies advancing fundamental knowledge.

  • Predictive –modeling and simulation tools.
  • Foundation – understanding the science of how, why and what will be necessary to enable nano-scale material to be transported through reservoir rock environments.

Murphy noted that new advances in technology being actively pursued by the consortium could enable autonomous, self-powered sensors that communicate parametric data that identify bypassed oil and gas.

Comments (0)


What Can I Do?

Add Item

Enter Notes:
* You must be logged in to name and customize your collection.
Recommend Recommend
Printable Version Printable Version Email to a friend Email to a friend

Emphasis: Exploration Innovations

See Also: Online e Symposium

Online e-Symposium Petrophysics of Shales Petrophysics of Shales Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-petrophysics-of-shales.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 1494

See Also: Short Course

Short Course In Conjunction with AAPG 2016 Annual Convention & Exhibition (ACE) - American Association of Petroleum Geologists (AAPG) ACE SC 14 | Integration of Petroleum Geochemistry and Reservoir PVT Analyses for Evaluation of Hydrocarbon Resource Plays ACE SC 14 | Integration of Petroleum Geochemistry and Reservoir PVT Analyses for Evaluation of Hydrocarbon Resource Plays Desktop /Portals/0/PackFlashItemImages/WebReady/reservoir-engineering-for-petroleum-geologists-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 23892

See Also: ACE Program Paper

ACE Program Paper Room 601/603 Cyclicity of Inclined Heterolithic Stratification in the McMurray Formation, NE Alberta, Canada Cyclicity of Inclined Heterolithic Stratification in the McMurray Formation, NE Alberta, Canada Desktop /Portals/0/images/ace/2015/luncheon heros/ace2015-tp9-other-unconventionals.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 15655

See Also: DL Abstract

See Also: VG Abstract

VG Abstract Introductory Geology Introductory Geology Desktop 15970