Needed: Resourceful technology

Lots of Potential, Lots of Hurdles

As North America tries to obtain energy security it will have to rely on more unconventional resources to fulfill its energy needs over the next decades – and balanced with that is the need for stewardship of the environment and the need to develop more sustainable strategies.

One of the largest unconventional resources in North America is the oil sands of northeastern Alberta.

Most of the world’s oil sands are found in Venezuela and Canada – and in Canada, the oil sands occur in Cretaceous fluvial-estuarine deposits of northeastern Alberta, covering an area of more than140,000 square kilometers.

Bitumen also is hosted in carbonates in Alberta, but to date these have not been commercially produced. In 2008, Alberta’s reserves estimates of remaining established bitumen reserves is 170.4 billion barrels (Gb), making it one of the world’s largest hydrocarbon accumulations.

In North America all of the bitumen currently being produced is from Alberta. In 2008 Alberta’s crude bitumen production totaled 477 million barrels (75.9 million cubic-meters). This total production is equivalent to 1.31 million barrels per day (207.4 thousand cubic-meters per day).

To put these numbers in perspective, in total only about 3.6 percent of the initial established crude bitumen reserves have been produced since 1967 when commercial production began in the province.

Only about 22 percent of the established oil sands reserves in Alberta can be recovered through surface mining, with the remaining 78 percent recoverable using in-situ, mainly thermal technologies. The most common in-situ technologies are cyclic steam stimulation and steam assisted gravity drainage (SAGD).

Recent research interests related to SAGD-development strategies include:

  • Mapping thin overburden, karst and glacial deposits.
  • Prediction of steam migration with permanently installed fiber-optic monitoring.
  • Experimental in-situ thermal coil heating of bitumen.
  • Use of developing technologies to reduce greenhouse gas emissions and tailings disposal.
  • Remediation of the landscape to return the sites to a biodiversity at least equal to the prior biodiversity index.
  • Transportation alternatives using new and existing infrastructure of pipelines and railways.

Earlier this year the Canada’s Energy Resources Conservation Board issued a directive that outlines new cleanup rules and penalties for non-compliance regarding tailings ponds regulations for the oil sands areas.


Future critical technology needs mainly concern the development of more environmentally friendly methods of extraction, production and upgrading of oil sands.

Most of the future bitumen resources will be extracted by in situ technologies. Because there is significant production of greenhouse gases with bitumen production and upgrading, critical technology needs involve research into:

  • Alternative sources of heat for generation of steam (i.e. geothermal, nuclear, burning of slag).
  • Use of other methods to reduce the viscosity of the bitumen so it will flow to the well bore or through pipelines more easily (i.e. diluents, catalysts, microbial and nanotechnology).
  • Underground in-situ extraction, refining and upgrading.
  • Co-sequestration of greenhouse gases by injection into abandoned reservoirs or other geologic media.

Beginning in the mid-1970s, the North American energy crises have made the Canadian oil sands a more strategic unconventional energy resource for North American interests.

With increased energy demand switching to unconventional, other areas most likely for future oil sands growth include the northwestern portion of Saskatchewan in the Western Canada Sedimentary Basin; the Colorado Plateau, Uinta and Paradox basins of Utah; the North Slope of Alaska; the Black Warrior Basin, Alabama; the Maverick Basin, southwest Texas; the Borderland Basins of California; the Eastern Interior and Appalachian basins of Kentucky and Illinois; and the Tri-State, Mid-Continent region of Kansas, Missouri and Oklahoma.

As with development of these vast resources in Canada, oil sands development in the United States will have to address the critical environmental issues as related to the balance between greenhouse gas emissions and water/energy usage and the recovery, production and upgrading of bitumen.

Comments (0)

 

Division Column-EMD Michael D. Campbell

Michael D. Campbell, EMD past president (2010-2011) and current chair of the EMD Uranium (Nuclear and Rare Earth) Minerals Committee: Although much is made in the media of the federal government’s role in the economy, its actual impact is minor.

Division Column-EMD Andrea Reynolds

Andrea A. Reynolds, P.G. EMD President 2012-13.

Division Column-EMD Art Johnson

AAPG member Art Johnson, who was vice chair for EMD at the recent AAPG Annual Convention and Exhibition in New Orleans, is with Hydrate Energy International, Kenner, La. 

Division Column-EMD Richard Erdlac

Richard Erdlac, principal geologist with Erdlac Energy Consulting, Midland, Texas, is acting chair and vice chair-Industry of the EMD Geothermal Energy Committee.

Division Column-EMD Fran Hein

Fran Hein  is EMD President, 2014-15.

Division Column-EMD Richard C. Bost

Richard C. Bost is serving as the co-chair on the EMD-DEG Renewable Energy Committee.

Division Column-EMD

The Energy Minerals Division (EMD), a division of AAPG, is dedicated to addressing the special concerns of energy resource geologists working with energy resources other than conventional oil and gas, providing a vehicle to keep abreast of the latest developments in the geosciences and associated technology. EMD works in concert with the Division of Environmental Geosciences to serve energy resource and environmental geologists.

View column archives

See Also: Bulletin Article

The Molasse Basin represents the northern foreland basin of the Alps. After decades of exploration, it is considered to be mature in terms of hydrocarbon exploration. However, geological evolution and hydrocarbon potential of its imbricated southernmost part (Molasse fold and thrust belt) are still poorly understood. In this study, structural and petroleum systems models are integrated to explore the hydrocarbon potential of the Perwang imbricates in the western part of the Austrian Molasse Basin.

The structural model shows that total tectonic shortening in the modeled north–south section is at least 32.3 km (20.1 mi) and provides a realistic input for the petroleum systems model. Formation temperatures show present-day heat flows decreasing toward the south from 60 to 41 mW/m2. Maturity data indicate very low paleoheat flows decreasing southward from 43 to 28 mW/m2. The higher present-day heat flow probably indicates an increase in heat flow during the Pliocene and Pleistocene.

Apart from oil generated below the imbricated zone and captured in autochthonous Molasse rocks in the foreland area, oil stains in the Perwang imbricates and oil-source rock correlations argue for a second migration system based on hydrocarbon generation inside the imbricates. This assumption is supported by the models presented in this study. However, the model-derived low transformation ratios (lt20%) indicate a charge risk. In addition, the success for future exploration strongly depends on the existence of migration conduits along the thrust planes during charge and on potential traps retaining their integrity during recent basin uplift.

Desktop /Portals/0/PackFlashItemImages/WebReady/evaluation-of-hydrocarbon-generation-and-migration.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 5771 Bulletin Article

See Also: CD DVD

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4036 CD-DVD

See Also: Environmental Geosciences Article

The West Virginia Division of Energy is currently evaluating several deep saline formations in the Appalachian Basin of West Virginia that may be potential carbon dioxide (CO2) sequestration targets. The Silurian Newburg Sandstone play, developed in the 1960s and 1970s, primarily involved natural-gas production from reservoir rock with well-developed porosity and permeability. High initial pres-sures encountered in early wells in the Newburg indicated that the overlying Silurian Salina Formation provides a competent seal. Be-cause of the large number of CO2 point sources in the region and the favorable reservoir properties of the formation (including an esti-mated 300 bcf of natural-gas production), the Newburg Sandstone was evaluated for the potential geologic storage of CO2. Within the Newburg play, there are several primary fields separated geographi-cally and geologically by saltwater contacts and dry holes. Previous studies have determined the storage potential within these individual fields. This study shows that the Newburg is more suitable for small-scale injection tests instead of large-scale regional storage operations.
Desktop /Portals/0/PackFlashItemImages/WebReady/evaluation-of-the-Newberg-Sandstone.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3416 Environmental Geosciences Article

See Also: Online e Symposium

Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-bakken-petroleum-system-of-the-williston-basin.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 1466 Online e-Symposium

The presenters will discuss effective management of wind farm operations and the challenges often encountered. 

Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-wind-farm-operations.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 450 Online e-Symposium