Needed: Resourceful technology

Lots of Potential, Lots of Hurdles

As North America tries to obtain energy security it will have to rely on more unconventional resources to fulfill its energy needs over the next decades – and balanced with that is the need for stewardship of the environment and the need to develop more sustainable strategies.

One of the largest unconventional resources in North America is the oil sands of northeastern Alberta.

Most of the world’s oil sands are found in Venezuela and Canada – and in Canada, the oil sands occur in Cretaceous fluvial-estuarine deposits of northeastern Alberta, covering an area of more than140,000 square kilometers.

Bitumen also is hosted in carbonates in Alberta, but to date these have not been commercially produced. In 2008, Alberta’s reserves estimates of remaining established bitumen reserves is 170.4 billion barrels (Gb), making it one of the world’s largest hydrocarbon accumulations.

In North America all of the bitumen currently being produced is from Alberta. In 2008 Alberta’s crude bitumen production totaled 477 million barrels (75.9 million cubic-meters). This total production is equivalent to 1.31 million barrels per day (207.4 thousand cubic-meters per day).

To put these numbers in perspective, in total only about 3.6 percent of the initial established crude bitumen reserves have been produced since 1967 when commercial production began in the province.

Only about 22 percent of the established oil sands reserves in Alberta can be recovered through surface mining, with the remaining 78 percent recoverable using in-situ, mainly thermal technologies. The most common in-situ technologies are cyclic steam stimulation and steam assisted gravity drainage (SAGD).

Recent research interests related to SAGD-development strategies include:

  • Mapping thin overburden, karst and glacial deposits.
  • Prediction of steam migration with permanently installed fiber-optic monitoring.
  • Experimental in-situ thermal coil heating of bitumen.
  • Use of developing technologies to reduce greenhouse gas emissions and tailings disposal.
  • Remediation of the landscape to return the sites to a biodiversity at least equal to the prior biodiversity index.
  • Transportation alternatives using new and existing infrastructure of pipelines and railways.

Earlier this year the Canada’s Energy Resources Conservation Board issued a directive that outlines new cleanup rules and penalties for non-compliance regarding tailings ponds regulations for the oil sands areas.


Future critical technology needs mainly concern the development of more environmentally friendly methods of extraction, production and upgrading of oil sands.

Most of the future bitumen resources will be extracted by in situ technologies. Because there is significant production of greenhouse gases with bitumen production and upgrading, critical technology needs involve research into:

  • Alternative sources of heat for generation of steam (i.e. geothermal, nuclear, burning of slag).
  • Use of other methods to reduce the viscosity of the bitumen so it will flow to the well bore or through pipelines more easily (i.e. diluents, catalysts, microbial and nanotechnology).
  • Underground in-situ extraction, refining and upgrading.
  • Co-sequestration of greenhouse gases by injection into abandoned reservoirs or other geologic media.

Beginning in the mid-1970s, the North American energy crises have made the Canadian oil sands a more strategic unconventional energy resource for North American interests.

With increased energy demand switching to unconventional, other areas most likely for future oil sands growth include the northwestern portion of Saskatchewan in the Western Canada Sedimentary Basin; the Colorado Plateau, Uinta and Paradox basins of Utah; the North Slope of Alaska; the Black Warrior Basin, Alabama; the Maverick Basin, southwest Texas; the Borderland Basins of California; the Eastern Interior and Appalachian basins of Kentucky and Illinois; and the Tri-State, Mid-Continent region of Kansas, Missouri and Oklahoma.

As with development of these vast resources in Canada, oil sands development in the United States will have to address the critical environmental issues as related to the balance between greenhouse gas emissions and water/energy usage and the recovery, production and upgrading of bitumen.

Comments (0)

 

Division Column-EMD Michael D. Campbell

Michael D. Campbell, EMD past president (2010-2011) and current chair of the EMD Uranium (Nuclear and Rare Earth) Minerals Committee: Although much is made in the media of the federal government’s role in the economy, its actual impact is minor.

Division Column-EMD Richard Erdlac

Richard Erdlac, principal geologist with Erdlac Energy Consulting, Midland, Texas, is acting chair and vice chair-Industry of the EMD Geothermal Energy Committee.

Division Column-EMD Andrea Reynolds

Andrea A. Reynolds, P.G. EMD President 2012-13.

Division Column-EMD Art Johnson

AAPG member Art Johnson, who was vice chair for EMD at the recent AAPG Annual Convention and Exhibition in New Orleans, is with Hydrate Energy International, Kenner, La. 

Division Column-EMD Richard C. Bost

Richard C. Bost is serving as the co-chair on the EMD-DEG Renewable Energy Committee.

Division Column-EMD Fran Hein

Fran Hein  is EMD President, 2014-15.

Division Column-EMD

The Energy Minerals Division (EMD), a division of AAPG, is dedicated to addressing the special concerns of energy resource geologists working with energy resources other than conventional oil and gas, providing a vehicle to keep abreast of the latest developments in the geosciences and associated technology. EMD works in concert with the Division of Environmental Geosciences to serve energy resource and environmental geologists.

View column archives

See Also: Bulletin Article

Emission of carbon dioxide (CO2) from fossil-fueled power generation stations contributes to global climate change. Capture of CO2 from such stationary sources and storage within the pores of geologic strata (geologic carbon storage) is one approach to mitigating anthropogenic climate change. The large storage volume needed for this approach to be effective requires injection into pore space saturated with saline water in reservoir strata overlain by cap rocks. One of the main concerns regarding storage in such rocks is leakage via faults. Such leakage requires, first, that the CO2 plume encounter a fault and, second, that the properties of the fault allow CO2 to flow upward. Considering only the first step of encounter, fault population statistics suggest an approach to calculate the probability of a plume encountering a fault, particularly in the early site-selection stage when site-specific characterization data may be lacking. The resulting fault encounter probability approach is applied to a case study in the southern part of the San Joaquin Basin, California. The CO2 plume from a previously planned injection was calculated to have a 4.1% chance of encountering a fully seal offsetting fault and a 9% chance of encountering a fault with a throw half the seal thickness. Subsequently available information indicated the presence of a half-seal offsetting fault at a location 2.8 km (1.7 mi) northeast of the injection site. The encounter probability for a plume large enough to encounter a fault with this throw at this distance from the injection site is 25%, providing a single before and after test of the encounter probability estimation method.
Desktop /Portals/0/PackFlashItemImages/WebReady/measuring-and-modeling-fault-density.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3714 Bulletin Article

See Also: CD DVD

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 5486 CD-DVD

See Also: DL Abstract

The geologic record places the modern sea-level rise into an historical context and can help inform discussions of the rates and magnitudes of future sea-level rise. With the development of large Northern Hemisphere ice sheets at 2.7 Ma, amplitudes of sea-level change increased, reaching over 100 m at times. A globally average sea-level rise of ~130 m followed the last ice age. We construct 21st century relative sea-level rise scenarios including global, regional, and local processes and project a 22 cm rise at bedrock locations by 2030.

Desktop /Portals/0/PackFlashItemImages/WebReady/geological-perspective-on-sea-level-rise-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 11666 DL Abstract

See Also: Energy Policy Blog

You probably paid a spectacularly large bill for home heating this winter and are now wondering how much gasoline prices will rise before you start on the family vacation.

Desktop /Portals/0/PackFlashItemImages/WebReady/is-your-smartphone-sabotaging-your-electric-bill-2014-05may-14.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 12898 Energy Policy Blog

The Organization of Petroleum Exporting Countries (OPEC, including Saudi Arabia, UAE, Venezuela, Algeria,  Indonesia, Iraq, Iran, Kuwait, Libya, Nigeria and Qatar) seems less of a menace now that the United States oil and natural gas production is booming. But OPEC continues to be a major exporter that can influence global oil supply and prices. However, OPEC countries are very dependent on export revenues to provide the jobs and services demanded by their populations, so a major shift in production volumes and prices is unlikely.

Desktop /Portals/0/PackFlashItemImages/WebReady/remember-opec-2014-05may-07.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 12897 Energy Policy Blog