Looking High and Low for References

The fundamental criteria required of a seismic reflection event that is to be used as a reference surface for interpreting thin-bed geology are that the seismic reflection should:

  • Extend across the entire seismic image space and have a good signal-to-noise character.
  • Be reasonably close (vertically) to the geology that is to be interpreted.
  • Be conformable to the strata that need to be analyzed.

Criterion 3 is probably the most important requirement on this list.


Figure 1 shows a data window from a vertical slice through a 3-D seismic volume that is centered on a channel system that is to be interpreted.

The seismic reflection event labeled “reference surface” was selected as an appropriate conformable reflection for interpreting the thin-bed channel system identified on figure 1a. The reference surface in this case follows the peak of the seismic reflection event on which it is positioned.

Four horizon surfaces labeled A, B, C and D, each conformable to the reference surface, pass through the targeted channel system on figure 1b.

Each of these horizon surfaces can tentatively be assumed to be a reasonable approximation of a stratal surface that intersects the channel system because each horizon is conformable to the selected reference reflection event, and a fundamental thesis of seismic stratigraphy is that seismic reflection events are chronostratigraphic by definition.

Figure 2a shows reflection amplitude behavior on horizon surface B. This horizon surface does a reasonable job of defining the targeted channel system (channel 1) across the lower right quadrant of the display and also depicts a second channel system (channel 2) at the top of the image display.

The image on figure 2a is a horizon-based image, meaning that the seismic attribute that is displayed is limited to a data window that vertically spans only one data point.


In challenging interpretation problems, it is important to try to define two seismic reference surfaces that bracket the geological interval that is to be interpreted – one reference surface being below the geological target and the other being above the target. An interpreter can then extend conformable surfaces across a targeted interval from two directions (from above and from below).

Sometimes one set of conformable surfaces will be more valuable as stratal surfaces than the other at the level of a targeted thin bed.

To illustrate the advantage of this opposite-direction convergence of seismic horizon surfaces, a second reference surface was interpreted above the targeted channel system and was placed closer to the target interval. This second reference surface followed the apex of the reflection troughs immediately above the channel system. The two bracketing reference surfaces are shown on figure 3.

The reflection amplitude response on a horizon surface conformable to reference surface 2 and positioned 26 milliseconds below that reference surface is displayed on figure 2b. This image is again a one-point-thick attribute display (i.e. a horizon-based attribute).

The channel systems are a bit crisper in appearance and their geometries are more definitive on this second imaging attempt than they were on the first effort (figure 2a).


This dual-direction approach to constructing horizon surfaces that traverse thin-bed targets is a concept that often will provide valuable results. An even better approach would be to calculate stratal slices through a bracketed data window – a concept discussed and illustrated in the article published June 2006.

Unfortunately, not all interpretation software provides a stratal slicing option.

In those cases, a dual-direction-approach strategy such as described here can be valuable for constructing horizon slices that approximate stratal slices.

Comments (0)

 

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.

VIEW COLUMN ARCHIVES

Image Gallery

See Also: Book

Desktop /Portals/0/PackFlashItemImages/WebReady/book-GS-SP-346-Australian-Landscapes-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4022 Book
Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4457 Book
Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4079 Book

See Also: Bulletin Article

Regional variations in thickness and facies of clastic sediments are controlled by geographic location within a foreland basin. Preservation of facies is dependent on the original accommodation space available during deposition and ultimately by tectonic modification of the foreland in its postthrusting stages. The preservation of facies within the foreland basin and during the modification stage affects the kinds of hydrocarbon reservoirs that are present.

This is the case for the Cretaceous Mowry Shale and Frontier Formation and equivalent strata in the Rocky Mountain region of Colorado, Utah, and Wyoming. Biostratigraphically constrained isopach maps of three intervals within these formations provide a control on eustatic variations in sea level, which allow depositional patterns across dip and along strike to be interpreted in terms of relationship to thrust progression and depositional topography.

The most highly subsiding parts of the Rocky Mountain foreland basin, near the fold and thrust belt to the west, typically contain a low number of coarse-grained sandstone channels but limited sandstone reservoirs. However, where subsidence is greater than sediment supply, the foredeep contains stacked deltaic sandstones, coal, and preserved transgressive marine shales in mainly conformable successions. The main exploration play in this area is currently coalbed gas, but the enhanced coal thickness combined with a Mowry marine shale source rock indicates that a low-permeability, basin-centered play may exist somewhere along strike in a deep part of the basin.

In the slower subsiding parts of the foreland basin, marginal marine and fluvial sandstones are amalgamated and compartmentalized by unconformities, providing conditions for the development of stratigraphic and combination traps, especially in areas of repeated reactivation. Areas of medium accommodation in the most distal parts of the foreland contain isolated marginal marine shoreface and deltaic sandstones that were deposited at or near sea level lowstand and were reworked landward by ravinement and longshore currents by storms creating stratigraphic or combination traps enclosed with marine shale seals.

Paleogeographic reconstructions are used to show exploration fairways of the different play types present in the Laramide-modified, Cretaceous foreland basin. Existing oil and gas fields from these plays show a relatively consistent volume of hydrocarbons, which results from the partitioning of facies within the different parts of the foreland basin.

Desktop /Portals/0/PackFlashItemImages/WebReady/controls-on-the-deposition-and-preservation.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3743 Bulletin Article

See Also: Learn! Blog

Get a first-hand look at the global nature of oil sand resources, a better understanding of advances in recovery processes, and what contributions resource geoscientists can make to the challenges of environmental protection and social license as well as driving prosperity and better standards of living for all through sustainable energy development.

Desktop /Portals/0/PackFlashItemImages/WebReady/blog-learn-CSPG-oil-sands-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 10985 Learn! Blog