Euler Curvature Can Be a Calculated Success

American Association of Petroleum Geologists (AAPG)
Contributors: Satinder Chopra, Kurt Marfurt

Several (12, we think) types of seismic-based curvature attributes have been introduced the last few years – and of these, the most-positive and the most-negative curvatures described in last month’s article are the most popular.

Most-positive and most-negative curvatures provide more continuous maps of faults and flexures than do maximum and minimum curvatures, because the latter tend to rapidly change algebraic sign at fault and flexure intersections.

Other attributes, such as mean curvature, Gaussian curvature and shape index, also have been used by a few practitioners.

We describe here a technique called Euler curvature, which has valuable applications.

An attraction of Euler curvature is that it can be calculated in any desired azimuth across a 3-D volume to enhance the definition of specific lineaments. When this apparent curvature (the Euler curvature) is computed in several specific azimuths, the results are quite useful for interpreting azimuth-dependent structure.

The flow diagram in figure 1 explains the method for computing azimuth-dependent Euler curvature.


Mapping the intensities of fracture sets has been a major objective of reflection seismologists. Curvature, acoustic impedance and reflection coherence currently are the most effective attributes used to predict fractures in post-stack seismic data.

We describe here the application of Euler curvature to a 3-D seismic volume from northeast British Columbia, Canada. We use an interactive workflow to utilize Euler curvature much as we do in generating a suite of shaded relief maps.

Figure 2 shows 3-D chair displays through volumes of Euler curvature calculated at azimuths of 0, 45, 90 and 135 degrees from north. The left column shows long-wavelength curvature calculations, and the right column displays short-wavelength calculations.

Notice how east-west lineaments stand out when north-south curvature is estimated (azimuth = 0):

  • When curvature is estimated in an azimuth of 45 degrees, northwest-southeast lineaments are pronounced.
  • When east-west curvature is calculated (azimuth = 90 degrees), north-south features events are emphasized.
  • When northwest-southeast curvature is estimated (azimuth = 135 degrees), events slightly inclined away from north-south are better defined.

The analysis area shown in these figures spans approximately 100 square kilometers.

As emphasized in last month’s article, short-wavelength displays show more lineament detail and resolution than do long-wavelength displays. That principle is illustrated again by the displays in figure 2.

The important concept presented here is that there are obvious advantages in calculating Euler curvature on post-stack seismic volumes, because azimuth directions of curvature can be chosen to highlight lineaments in preferred directions.


Euler curvatures calculated in desired azimuthal directions produce better definitions of targeted lineaments.

Depending on the desired level of detail, either long- wavelength or short-wavelength estimates can be calculated. Short-wavelength Euler curvature would be more beneficial for observing fracture lineaments.

This work is in progress, and we hope to calibrate seismic-based lineaments determined with this technology with lineaments interpreted from image logs.


We thank Arcis Corporation for permission to show the data examples, as well as for the permission to publish this work.

Comments (0)


What Can I Do?

Add Item

Enter Notes:
* You must be logged in to name and customize your collection.
Recommend Recommend
Printable Version Printable Version Email to a friend Email to a friend

Geophysical Corner

Geophysical Corner - Satinder Chopra
Satinder Chopra, award-winning chief geophysicist (reservoir), at Arcis Seismic Solutions, Calgary, Canada, and a past AAPG-SEG Joint Distinguished Lecturer began serving as the editor of the Geophysical Corner column in 2012.

Geophysical Corner - Kurt Marfurt
AAPG member Kurt J. Marfurt is with the University of Oklahoma, Norman, Okla.

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.


Image Gallery

Part 2 of 3

This month's column, part two of a three-part series comparing structural and amplitude curvatures, deals with observing fault and fracture lineaments. See: Part 1

See Also: Field Seminar

Field Seminar In Conjunction with AAPG Annual Convention & Exhibition (ACE) — SEPM (Society for Sedimentary Geology) ACE FT 08 | Architecture & Evolution of a Tidally-Influenced Regressive Succession, Drumheller Area ACE FT 08 | Architecture & Evolution of a Tidally-Influenced Regressive Succession, Drumheller Area Desktop /Portals/0/PackFlashItemImages/WebReady/ACE-2016-FT-08-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 23964

See Also: Online Certificate Course

Online Certificate Course Introduction to Shale Gas Introduction to Shale Gas Desktop /Portals/0/PackFlashItemImages/WebReady/oc-cc-introduction-to-shale-gas.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 1472

See Also: ACE Program Paper

ACE Program Paper Four Seasons Ballroom 4 Lithology and TOC at the Base of the Vaca Muerta Formation, Neuquén Basin, Argentina Lithology and TOC at the Base of the Vaca Muerta Formation, Neuquén Basin, Argentina Desktop /Portals/0/images/ace/2015/luncheon heros/ace2015-tp7-basin-modeling.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 15530

See Also: DL Abstract

DL Abstract Anatomy of a Petroleum Source Rock Anatomy of a Petroleum Source Rock Desktop 11652

See Also: Learn! Blog

Learn! Blog Reality-Based Reservoir Development Meeting 23 September 2015 | Oklahoma City, Oklahoma What Are the Engineering Realities that Geologists Need to Know? What Are the Engineering Realities that Geologists Need to Know? Desktop /Portals/0/PackFlashItemImages/WebReady/what-are-the-engineering-realities-that-geologists-need-to-know-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 22213