In Overthrust Settings, Tie, Tie (2-D) Again

Contributors: Rob Vestrum

In the rough terrain of overthrust settings, 2-D seismic data continues to be a standard tool for subsurface mapping – and not only because of economic reasons. Two-D and 3-D seismic surveys are complementary in land environments, because each data type has its own strength and weakness.

Three-D seismic data gives us a three-dimensional image volume of the subsurface, with no out-of-plane energy problems or potential to miss structural details between 2-D profiles. With such limitations in 2-D seismic data, one might argue that a better exploration strategy would be to just shoot 3-D surveys and not bother with 2-D seismic data, which may be getting obsolete.

However, in land seismic acquisition with rough terrain and heavy vegetation, access restrictions make the logistics difficult and expensive to acquire 3-D seismic data with high density. Two-D surveys give us overall higher fold and much higher resolution – and the improved resolution in the shallow section helps us tie surface geology to the subsurface reflectors.

Where 2-D and 3-D data overlap, the 2-D lines can complement the 3-D interpretation with a higher-resolution perspective.

So, for scientific as well as economic reasons, 2-D seismic data will continue to be a mainstay in resource exploration in compressional and transpressional geologic settings.

One of the major pitfalls when interpreting 2-D seismic data is dealing with out-of-plane reflections, especially when trying to tie intersecting lines in structured areas.

Structural geologists and interpretation geophysicists can understand the problem of reflection event correlation across intersecting depth profiles and overcome the difficulty by considering the direction of propagation of seismic energy.

Tying 2-D Profiles in Structure

When processing seismic images in thrust-belt areas, it is rare that we are able to make a perfect tie between intersecting 2-D lines.

It is possible to manage the mistie in the time shifts and wavelet character differences between lines, but when we have dipping reflectors on our seismic data, the reflection energy will be coming from out of the 2-D plane of acquisition, resulting in a mistie in time that a simple static shift cannot repair.

\Figure 1 shows two intersecting depth-migrated lines over a thrusted structure in the foothills of the Andes. The left half of the figure shows the dip line. The dips in the overthrust range between 10 degrees and 30 degrees. The right side if the figure is the intersecting strike line.

Note that there is a reasonably good tie between the two lines below 3.5 kilometers depth, where there are relatively flat layers in the footwall. Above the fault (~3.3 kilometers depth at the intersection), the reflectors on the strike line do not line up with the reflectors on the dip line. The layers in the shallow section are dipping, so the reflectors on the strike line are imaged from out of the 2-D plane.

Since we illuminate the reflectors at angles near the bedding-plane normal, if one wanted to correlate these dipping reflectors, then one would need to align the sections along the bedding-normal direction.

Figure 2 shows the improvement in reflector alignment in the shallow section if we rotate the strike line 10 degrees counter-clockwise about the intersecting point at the surface. In this orientation, the correlation is along a direction normal to bedding on the dip line.

After the rotation (figure 2), the reflector alignment is significantly improved between dip and strike lines in the hanging wall. The footwall reflectors, which are more flat, do not tie as well in figure 2 as with the vertical tie in figure 1,because the normal-to-bedding direction of these layers is near vertical.

Even though the strike line imaged the subsurface reflector outside of its 2-D plane, we still can correlate the two lines by orienting the strike line in the direction normal to bedding.

There will still be challenges in creating a 3-D structure map, but at least one may tie the reflectors between lines to ensure consistent mapping over the entire area of 2-D coverage.


When tying 2-D lines in structure, one must not only consider possible differences in static shifts and the phase of the seismic wavelet between intersecting lines, but we also need to consider possible problems with out-of-plane energy.

In reasonably simple geometries with gentle dips, rotating the seismic section at the surface intersection point may simplify the problem of correlating reflectors between dip and strike lines.

Comments (0)


Geophysical Corner

Geophysical Corner - Satinder Chopra
Satinder Chopra, chief geophysicist (reservoir), at Arcis Seismic Solutions, Calgary, Canada, began serving as the editor of the Geophysical Corner column in 2012.

Geophysical Corner - Ritesh Kumar Sharma

Ritesh Kumar Sharma is with Arcis Seismic Solutions, Calgary, Canada.

Geophysical Corner - Rob Vestrum

Rob Vestrum is chief geophysicist at Thrust Belt Imaging, Calgary, Alberta, Canada.

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.


Image Gallery

See Also: Book

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4344 Book
Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4193 Book
Alternative Resources, Structure, Geochemistry and Basin Modeling, Sedimentology and Stratigraphy, Geophysics, Business and Economics, Engineering, Petrophysics and Well Logs, Environmental, Geomechanics and Fracture Analysis, Compressional Systems, Salt Tectonics, Tectonics (General), Extensional Systems, Fold and Thrust Belts, Structural Analysis (Other), Basin Modeling, Source Rock, Migration, Petroleum Systems, Thermal History, Oil Seeps, Oil and Gas Analysis, Maturation, Sequence Stratigraphy, Clastics, Carbonates, Evaporites, Seismic, Gravity, Magnetic, Direct Hydrocarbon Indicators, Resource Estimates, Reserve Estimation, Risk Analysis, Economics, Reservoir Characterization, Development and Operations, Production, Structural Traps, Oil Sands, Oil Shale, Shale Gas, Coalbed Methane, Deep Basin Gas, Diagenetic Traps, Fractured Carbonate Reservoirs, Stratigraphic Traps, Subsalt Traps, Tight Gas Sands, Gas Hydrates, Coal, Uranium (Nuclear), Geothermal, Renewable Energy, Eolian Sandstones, Sheet Sand Deposits, Estuarine Deposits, Fluvial Deltaic Systems, Deep Sea / Deepwater, Lacustrine Deposits, Marine, Regressive Deposits, Transgressive Deposits, Shelf Sand Deposits, Slope, High Stand Deposits, Incised Valley Deposits, Low Stand Deposits, Conventional Sandstones, Deepwater Turbidites, Dolostones, Carbonate Reefs, (Carbonate) Shelf Sand Deposits, Carbonate Platforms, Sebkha, Lacustrine Deposits, Salt, Conventional Drilling, Directional Drilling, Infill Drilling, Coring, Hydraulic Fracturing, Primary Recovery, Secondary Recovery, Water Flooding, Gas Injection, Tertiary Recovery, Chemical Flooding Processes, Thermal Recovery Processes, Miscible Recovery, Microbial Recovery, Drive Mechanisms, Depletion Drive, Water Drive, Ground Water, Hydrology, Reclamation, Remediation, Remote Sensing, Water Resources, Monitoring, Pollution, Natural Resources, Wind Energy, Solar Energy, Hydroelectric Energy, Bioenergy, Hydrogen Energy
Desktop /Portals/0/PackFlashItemImages/WebReady/book-s65-Application-of-Structural-Methods-to-Rocky-Mountain.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 5826 Book

See Also: Bulletin Article

We present a method of using fault displacement-distance profiles to distinguish fault-bend, shear fault-bend, and fault-propagation folds, and use these insights to guide balanced and retrodeformable interpretations of these structures. We first describe the displacement profiles associated with different end-member fault-related folding models, then provide examples of structures that are consistent with these model-based predictions. Natural examples are imaged in high-resolution two- and three dimensional seismic reflection data sets from the Niger Delta, Sichuan Basin, Sierras Pampeanas, and Cascadia to record variations in displacement with distance updip along faults (termed displacement-distance profiles). Fault-bend folds exhibit constant displacement along fault segments and changes in displacement associated with bends in faults, shear fault-bend folds demonstrate an increase in displacement through the shearing interval, and fault-propagation folds exhibit decreasing displacement toward the fault tip. More complex structures are then investigated using this method, demonstrating that displacement-distance profiles can be used to provide insight into structures that involve multiple fault-related folding processes or have changed kinematic behavior over time. These interpretations are supported by comparison with the kinematics inferred from the geometry of growth strata overlying these structures. Collectively, these analyses illustrate that the displacement-distance approach can provide valuable insights into the styles of fault-related folding.

Desktop /Portals/0/PackFlashItemImages/WebReady/fault-displacement-distance-relationships-as-indicators.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 5770 Bulletin Article

See Also: Energy Policy Blog

BOEM has just issued its programmatic environmental impact statement (PEIS) for comment--through April 7. In announcing the decision, BOEM stated, that its review of geological and geophysical surveys in the Mid- and South-Atlantic planning areas "...establishes multiple mitigation measures designed to minimize the impacts to marine life while setting a path forward for survey activities that will update nearly four-decade-old data on offshore energy resources in the region."

Desktop /Portals/0/PackFlashItemImages/WebReady/atlantic-seismic-survey-2014-03mar-03.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 12377 Energy Policy Blog