Common Wording vs. Historical Terminology

For more than 100 years, shale oil has referred to the product of pyroly­sis of oil shale, whereas oil shale refers to organic rich (kerogen) rock that has never reached the oil window.

The oil shale industry, operating since the 1850s producing shale oil and electric power, never achieved the size of the petroleum industry – but this does not give the larger in­dustry the right to expropriate the technical term.

Is oil shale a misnomer because the rock does not contain oil and is not shale? Wine grapes contain no wine, but are still wine grapes.

The connotative flexibility of English is why we have so much great poetry and so many lawyers. The language does not care whether oil shale describes a rock that yields liquid hydrocarbons upon being heated in a technologi­cally complex process, or one that yields liquid hydrocarbons upon being fractured in a techno­logically complex process.

Is the rock properly termed a marl or marlstone – an assertion rarely accompanied by data? In industry we too easily refer to lithified sandstone bodies as sands, and marlstones as marls. Marl is a term for sediment, not sedimentary rock, and oil shale is lithified.

The Mahogany zone of the Green River Formation (GRF), one target in the richest, larg­est, most famous oil shale deposit, has low clay content. However, the Garden Gulch Member, being tested by American Shale Oil (AMSO) in Colorado, is clay-rich, laminated, and fine-grained – perfectly good shale. Other oil shale deposits contain substantial clay. The clay-poor oil shale of the GRF is rich in diagenetic feldspar and dawsonite (NaAl(OH)2CO3), resulting from clay mineral breakdown reactions in the saline lacustrine environment where it formed. The feldspathic mudstone and marlstone are unusual sedimentary rocks (see figure 43).

The more we look at shale reservoirs, the more complicated it gets (just like sandstone and carbonate reservoirs).

Referring to plays like the Bakken and Eagle Ford as shale oil plays, then correcting that to recognize the importance of dolomitic and silty rocks of the Middle Member of the Bakken, leaves us with widespread confusion.

I suggest the terms “oil-bear­ing shale” and “shale-hosted oil” for the rocks on one hand, and products or plays on the other (Allix et al., 2010). These terms clarify that the rock contains oil in accepted form for ge­o­logic terminology.

Each formation plotted in figure 1 has been called shale, although the data show many don’t fit classical concepts of shale (like Pettijohn’s 1975 average shale, highlighted in red) any better than the GRF.

Indeed, in “shale” plays the brittleness needed for hydraulic frac­turing comes from low clay mineral content and high framework silicate (Barnett, Mon­te­rey) or carbonate (Eagle Ford, Duvernay) mineral content.

Potter, Maynard and DePetris (2005) suggested the term “shale” should be restricted to its original sense of laminated and fissile fine-grained sedimentary rocks (Hoosen, 1747), in line with the word origin from old German and old Norse words for “scale.” Shale, as well as tradi­tional mudstone, marlstone and even carbonate mudstone all came from mud, so classing them under the generic name mudstone could be justified.

As for what we can do to define what we mean by shale, I believe a more consistent definition would require a thoughtful effort at consensus within the sedimentary and petroleum geology community. I present a few ideas here, but recognize the significant alteration such a process produces.

The public, press, financial and industry communities will continue to act like field geolo­gists, and use informal terms. Shale has been an Eng­lish word for longer than it has been a geologic term. Geologists have to live with that, because we borrow common terms from local languages, rather than creating Latin or Greek terms.

Thinking of the public arena as fieldwork allows us some informality in language.

It is increasingly important for us to engage the public, and in so doing, to consider words and terminology – and their definitions and interpretations – carefully. (References available at online Explorer).


  • Allix, P., J. Boak, A. Burnham, M. Herron and R. Kleinberg (2010) Gas Shale, Oil Shale, and Oil-Bearing Shale: Simi–larities and Differences, Hedberg Conference on Critical Assessment of Shale Resource Plays, December 5-10, 2010, Austin, Texas USA
  • Beilby, G. T. (1897) Thirty Years’ Development in the Shale Oil Industry. J. Soc. Chem. Ind., 18, 876886.
  • Irvine, R. (1894) Shale Oil Industry. J. Soc. Chem. Ind., 13, 1039-1044.
  • Hoosen, W. (1747) The Miner’s Dictionary, Wrexham England, unpaged
  • Pettijohn, F. J. (1975), Sedimentary Rocks: New York, Harper and Row, 628 p.
  • Potter, P. E., J. B. Maynard, and P. J. Depetris, (2005) Mud and Mudstones: introduc–tion and overview; Berlin ; New York : Springer, 297 p.
  • Taylor, A. (1873) On Bitumen, Oil Shales and OilCoals. Edinburgh Geol. Soc. Trans., 2, 187189.

Comments (0)


Division Column-EMD

Division Column-EMD Jeremy Boak
Jeremy Boak, P.G., EMD President 2013-14.

Division Column-EMD

The Energy Minerals Division (EMD), a division of AAPG, is dedicated to addressing the special concerns of energy resource geologists working with energy resources other than conventional oil and gas, providing a vehicle to keep abreast of the latest developments in the geosciences and associated technology. EMD works in concert with the Division of Environmental Geosciences to serve energy resource and environmental geologists.

View column archives

See Also: Bulletin Article

Oil degradation in the Gullfaks field led to hydrogeochemical processes that caused high CO2 partial pressure and a massive release of sodium into the formation water. Hydrogeochemical modeling of the inorganic equilibrium reactions of water-rock-gas interactions allows us to quantitatively analyze the pathways and consequences of these complex interconnected reactions. This approach considers interactions among mineral assemblages (anorthite, albite, K-feldspar, quartz, kaolinite, goethite, calcite, dolomite, siderite, dawsonite, and nahcolite), various aqueous solutions, and a multicomponent fixed-pressure gas phase (CO2, CH4, and H2) at 4496-psi (31-mPa) reservoir pressure. The modeling concept is based on the anoxic degradation of crude oil (irreversible conversion of n-alkanes to CO2, CH4, H2, and acetic acid) at oil-water contacts. These water-soluble degradation products are the driving forces for inorganic reactions among mineral assemblages, components dissolved in the formation water, and a coexisting gas at equilibrium conditions.

The modeling results quantitatively reproduce the proven alteration of mineral assemblages in the reservoir triggered by oil degradation, showing (1) nearly complete dissolution of plagioclase; (2) stability of K-feldspar; (3) massive precipitation of kaolinite and, to a lesser degree, of Ca-Mg-Fe carbonate; and (4) observed uncommonly high CO2 partial pressure (61 psi [0.42 mPa] at maximum). The evolving composition of coexisting formation water is strongly influenced by the uptake of carbonate carbon from oil degradation and sodium released from dissolving albitic plagioclase. This causes supersaturation with regard to thermodynamically stable dawsonite. The modeling results also indicate that nahcolite may form as a CO2-sequestering sodium carbonate instead of dawsonite, likely controlling CO2 partial pressure.

Desktop /Portals/0/PackFlashItemImages/WebReady/controls-on-co2-fate-and-behavior.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 5727 Bulletin Article

Sandstone pressures follow the hydrostatic gradient in Miocene strata of the Mad Dog field, deep-water Gulf of Mexico, whereas pore pressures in the adjacent mudstones track a trend from well to well that can be approximated by the total vertical stress gradient. The sandstone pressures within these strata are everywhere less than the bounding mudstone pore pressures, and the difference between them is proportional to the total vertical stress. The mudstone pressure is predicted from its porosity with an exponential porosity-versus-vertical effective stress relationship, where porosity is interpreted from wireline velocity. Sonic velocities in mudstones bounding the regional sandstones fall within a narrow range throughout the field from which we interpret their vertical effective stresses can be approximated as constant. We show how to predict sandstone and mudstone pore pressure in any offset well at Mad Dog given knowledge of the local total vertical stress. At Mad Dog, the approach is complicated by the extraordinary lateral changes in total vertical stress that are caused by changing bathymetry and the presence or absence of salt. A similar approach can be used in other subsalt fields. We suggest that pore pressures within mudstones can be systematically different from those of the nearby sandstones, and that this difference can be predicted. Well programs must ensure that the borehole pressure is not too low, which results in borehole closure in the mudstone intervals, and not too high, which can result in lost circulation to the reservoir intervals.

Desktop /Portals/0/PackFlashItemImages/WebReady/subsalt-pressure-prediction-in-the-miocene.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 5774 Bulletin Article

See Also: CD DVD

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4507 CD-DVD

See Also: Online Certificate Course

Solar Energy Basics is an online course that enables participants to review, analyze, and evaluate opportunities in the rapidly expanding market for solar energy.

Desktop /Portals/0/PackFlashItemImages/WebReady/oc-cc-solar-energy-basics.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 1448 Online Certificate Course

See Also: Short Course

This course is designed to introduce participants to geosteering principals, interpretation practices, and lead to the ability to recognize potential pitfalls.
Desktop /Portals/0/PackFlashItemImages/WebReady/ace2015-sc12-three-ps-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 14596 Short Course