Managing Seismicity

One year ago this month I was sitting in AAPG’s GEO-DC office at the American Geosciences Institute in Alexandria, Va., when a 5.8 magnitude earthquake rocked the state. It was the strongest earthquake I had ever experienced. And in a region unaccustomed to feeling such tremors many wondered if hydraulic fracturing, which was dominating headlines at the time, may have been responsible for the quake.

Fast-forward to earlier this year when I experience several earthquakes and aftershocks in Tulsa. These, too, triggered a lively debate in the media about whether they were related to hydraulic fracturing or other oil and natural gas activities.

Getting to the heart of whether energy production triggers seismic activity is the subject of a new study, titled “Induced Seismicity Potential in Energy Technologies,” released in June by the National Research Council.

The report focuses on four technologies:

  • Geothermal energy.
  • Carbon capture and storage (CCS).
  • Conventional oil and gas, including enhanced oil recovery.
  • Unconventional oil and gas development, such as shale gas, requiring hydraulic fracturing.

The National Research Council is the operating arm of the U.S. National Academies of Science and Engineering, and the Institute of Medicine. And it was commissioned to conduct this study by the U.S. Department of Energy (DOE) after a request from Sen. Jeff Bingaman (D-N.M), chair of the Senate Energy and Natural Resources Committee.

In his letter to Energy Secretary Steven Chu, Bingaman noted that “much public opposition to the deployment of advanced energy technologies in the United States stems from a lack of clear, trusted information regarding the safety of those new energy facilities for the local communities that are their neighbors. A National Academies study can provide information to these concerned communities …”

The NRC assembled a diverse group of talented and experienced scientists and engineers chaired by Murray Hitzman of the Colorado School of Mines, an AAPG member. Other AAPG members on the committee were Don Clarke and Julie Schmeta.

As the study noted, “Since the 1920s we have recognized that pumping fluids into or out of the Earth has the potential to cause seismic events that can be felt.”

Thus, the study committee’s charge was to look at geothermal, carbon storage, and oil and natural gas technologies to determine the likelihood of these inducing seismic events – but also to identify knowledge gaps and areas of additional scientific research that would be helpful in managing any risks associated with these activities.

The report lists three major findings:

  • The process of hydraulic fracturing a well as presently implemented for shale gas recovery does not pose a high risk for inducing felt seismic events.
  • Injection for disposal of waste water derived from energy technologies into the subsurface does pose some risk for induced seismicity, but very few events have been documented over the past several decades relative to the large number of disposal wells in operation.
  • CCS, due to the large volumes of injected fluids, may have potential for inducing larger seismic events.

According to the report a principal driver of induced seismicity is the volume of fluid extracted or injected into the subsurface and the resulting effect on pore fluid pressure and/or changes in stress regimes in the rocks and around fault zones. When these volumes are roughly balanced the likelihood of triggering seismic activity appears to be lower.

Waste water disposal wells are typically designed to inject into formations with porosity and permeability sufficient to accept large volumes of fluid. So, while there have been several documented cases of induced seismicity related to waste water disposal, the probability of occurrence is low.

Fluid balance is important in geothermal wells, as well. Another factor affecting these wells is the potential for the difference in temperature between the injected fluids and rock to cause contraction and triggering seismic activity. As an example, this has been documented in The Geysers geothermal field in California.

Large-scale injection of super critical CO2 over an extended period has not occurred in either the research CCS projects conducted in the United States or the commercial CCS projects overseas. As a result there is insufficient knowledge of its potential to induce seismicity.

The difficulty in predicting induced seismicity is twofold:

  • First, we are dealing with complex natural geological systems and, frequently, a lack of fundamental geological data needed to adequately understand these systems.
  • Second, we do not have risk assessment models that have been sufficiently validated to be useful tools.

But these models and methodologies can be developed. And the committee urges both increased government cooperation at the federal and state level, as well as an ongoing learning process as energy development progresses resulting in a “best practices protocol” for each energy technology. In fact, they point to a protocol developed by DOE for engineered geothermal systems as a useful template.

Our understanding of the natural systems where we find and produce the energy needed to power modern life improves as we explore and produce. And as the NRC report indicates, the risks of inducing seismic activity, particularly from oil and natural gas activities, are low and manageable.

The complete report is available for download at the National Academies website.

Comments (0)

 

Director's Corner

Director's Corner - David Curtiss

David Curtiss is an AAPG member and was named AAPG Executive Director in August 2011. He was previously Director of the AAPG GEO-DC Office in Washington D.C.

The Director's Corner covers Association news and industry events from the worldview perspective of the AAPG Executive Director.

View column archives

See Also: Bulletin Article

Gas generation is a commonly hypothesized mechanism for the development of high-magnitude overpressure. However, overpressures developed by gas generation have been rarely measured in situ, with the main evidence for such overpressures coming from source rock microfractures, the physical necessity of overpressures for primary migration, laboratory experiments, and numerical modeling. Indeed, previous in-situ observations suggest that gas generation only creates highly localized overpressures within rich source rocks. Pore-fluid pressure data and sonic velocity–vertical effective stress plots from 30 wells reveal that overpressures in the northern Malay Basin are primarily generated by fluid expansion and are located basinwide within the Miocene 2A, 2B, and 2C source rock formations. The overpressures are predominantly associated with gas sampled in more than 83% of overpressure measurements and have a sonic-density response consistent with gas generation. The association of fluid expansion overpressures with gas, combined with the sonic-density response to overpressure and a regional geology that precludes other overpressuring mechanisms, provides convincing in-situ evidence for basinwide gas generation overpressuring. Overpressure magnitude analysis suggests that gas generation accounts for approximately one-half to two-thirds of the measured excess pore pressure in the region, with the remainder being generated by coincident disequilibrium compaction. Thus, the data herein suggest that gas generation, if acting in isolation, is producing a maximum pressure gradient of 15.3 MPa/km (0.676 psi/ft) and not lithostatic magnitudes as commonly hypothesized. The gas generation overpressures in this article are not associated with a significant porosity anomaly and represent a major drilling hazard, with traditional pore-pressure prediction techniques underestimating pressure gradients by 2.3 plusmn 1.5 MPa/km (0.1 plusmn 0.07 psi/ft).
Desktop /Portals/0/PackFlashItemImages/WebReady/evidence-for-overpressure-generation.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3717 Bulletin Article

See Also: Energy Policy Blog

Those of us in the petroleum industry have been tracking the rapid expansion of oil and gas production from shales and in the process we may not have noticed the rapid expansion of renewable energy, especially wind. Read the latest Energy Information Administration (EIA) statistics.

Desktop /Portals/0/PackFlashItemImages/WebReady/renewables-are-booming-too-2014-08aug-08.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 12909 Energy Policy Blog

As Arctic ice thins and retreats, growing commercial access–from cruise ships to oil and gas drilling–will increase the risk of an oil spill. A recent National Research Council report found that resources, technology, research, manpower, funding and logistics are inadequate to respond to an Arctic oil spill.

Desktop /Portals/0/PackFlashItemImages/WebReady/National-Academies-US-Inadequately-Prepared-for-an-Arctic-Oil-Spill-2014-04apr-30-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 12896 Energy Policy Blog

See Also: Field Seminar

Participants will learn through the use of spectacular outcrops, subsurface datasets, and stratigraphic modeling how these systems tracts and key surfaces (flooding surfaces and sequence boundaries) may be recognized.

Desktop /Portals/0/PackFlashItemImages/WebReady/fs-sedimentology-and-sequence-stratigraphic-response-of-paralic-deposits.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 86 Field Seminar

See Also: Online e Symposium

This e-symposium introduces you to the practical benefits of thermal profiling for a variety of unconventional oil and gas projects, including tight gas sands, oil shale, low-gravity oil.

Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-how-tight-is-your-gas.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 1443 Online e-Symposium