Geological Factors Can Lead to Poor Matches

Contributors: Satinder Chopra

The traditional tool interpreters have used to establish correspondences between subsurface stratigraphy and surface-measured seismic data has been synthetic seismograms calculated from well log data.

In some instances, however, it is difficult to create an optimal-quality match between a synthetic seismogram and seismic data.

We consider here possible geological reasons why poor matches sometimes occur – particularly in stratigraphic intervals where rock properties change laterally.


Consider the stratigraphic condition diagrammed on figure 1. Here a well penetrates a sand body that has a lateral dimension less than that of the dominant wavelength λ of an illuminating seismic wavefield.

Because sonic and density log data acquired in the well indicate a change in acoustic impedance at the top and base of the sand unit (interfaces A and B), a synthetic seismogram calculation using these logs will create a seismic reflection at the top and base of the sand.

However, surface seismic data will not show such reflection events, because the lateral dimension of the sand body is too small to create a reflected wavefront. For a seismic wavefield having a dominant wavelength λ, the sand body along this particular profile is a point diffractor, not a reflector.

You may see a diffraction in unmigrated seismic data, but after the data are migrated the sand body probably would appear as only a mild amplitude variation on one or two data traces – and would be ignored by an interpreter.

The principle illustrated by this example is that a synthetic seismogram will imply a reflection should be at the depth of the sand body, but migrated seismic data would not. This difference exists, even though the log data are correct and the synthetic seismogram calculation is accurate, because log data measure rock properties within only a meter or so of a wellbore.

In contrast, a seismic wavefield averages rock properties over an appreciable area having a diameter of the order of its dominant wavelength λ.


The reverse of this situation also can occur – that is, a synthetic seismogram can indicate no reflection is present at a depth where surface seismic data show a bold reflection.

A stratigraphic condition that could create such a discrepancy is illustrated on figure 2; here a well passes through a gap having a dimension of the order of λ between two laterally extensive sands.

Because log data acquired in the well indicate no impedance changes over the depth interval local to the sand bodies, a synthetic seismogram calculation will produce no reflection event. However, both migrated and unmigrated seismic data will show a reasonably continuous reflection event across the well position, with perhaps a slight amplitude anomaly at the well coordinate.

Again, the log data are correct, the synthetic seismogram calculation is correct and the seismic data are correct – yet the synthetic seismogram and the seismic data do not agree.

The difference is caused by the fact that log data measure geological properties over a distance of one meter or less, but seismic data respond to geological properties over a distance of several tens of meters.

If one-meter geology is significantly different from 50-meter and 100-meter geology, there often will be mismatches between synthetic seismograms and seismic reflection data.

Comments (0)

 

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.

VIEW COLUMN ARCHIVES

Image Gallery

See Also: Bulletin Article

Prolific hydrocarbon discoveries in the subsalt, commonly known as the “presalt,” section of Brazil and the conjugate African margin have created a business imperative to predict reservoir quality in lacustrine carbonates. Geothermal convection is a style of groundwater flow known to occur in rift settings, which is capable of diagenetic modification of reservoir quality. We simulated variable density groundwater flow coupled with chemical reactions to evaluate the potential for diagenesis driven by convection in subsalt carbonates.

Rates of calcite diagenesis are critically controlled by temperature gradient and fluid flux following the principles of retrograde solubility. Simulations predict that convection could operate in rift carbonates prior to salt deposition, but with rates of dissolution in the reservoir interval only on the order of 0.01 vol. %/m.y., which is too low to significantly modify reservoir quality. The exception is around permeable fault zones and/or unconformities where flow is focused and dissolution rates are amplified to 1 to 10 vol. %/m.y. and could locally modify reservoir quality. After salt deposition, simulations also predict convection with a critical function for salt rugosity. The greatest potential for dissolution at rates of 0.1 to 1 vol. %/m.y. occurs where salt welds, overlying permeable carbonates thin to 500 m (1640 ft) or less. With tens of million years residence times feasible, convection under these conditions could locally result in reservoir sweet spots with porosity modification of 1% to 10% and potentially an order of magnitude or more in reservoir permeability. Integrating quantitative model–derived predictive diagenetic concepts with traditional subsurface data sets refines exploration to production scale risking of carbonate reservoir presence and quality.

Desktop /Portals/0/PackFlashItemImages/WebReady/geothermal-convection-in-south-atlantic-subsalt.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 5682 Bulletin Article

See Also: CD DVD

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4514 CD-DVD

See Also: Environmental Geosciences Article

Shales are becoming the most important source of natural gas in North America, and replacement of coal by natural gas is reducing CO2 emissions and improving air quality. Nevertheless, shale gas is facing strong opposition from environmental nongovernmental organizations. Although these organizations have greatly exaggerated the potential negative environmental impacts of shale gas and shale oil, methane leakage and contamination of groundwater and surface water by flowback and produced waters are serious concerns. These contamination pathways are not unique to shale gas and shale oil, and they are manageable.
Desktop /Portals/0/PackFlashItemImages/WebReady/shale-gas-opportunites.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3421 Environmental Geosciences Article

See Also: Short Course

The course is a practical and applied introduction to geochemical techniques routinely employed in shale-gas condensate and tight-oil reservoir assessment with an emphasis on tools and techniques. Participants should have a solid background in petroleum geology.
Desktop /Portals/0/PackFlashItemImages/WebReady/sc-introductory-geochemistry-for-condensate-rich-shales-and-tight-oil.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 10167 Short Course

This one-day course will review state-of-the-art techniques for characterizing mudrock reservoirs at the pore scale. Shale/mudrock structure and pore systems will be emphasized. It will conclude with applications of shale reservoir characterization using pore-scale imaging.

Desktop /Portals/0/PackFlashItemImages/WebReady/ace2015-sc18-mudrock-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 14646 Short Course