Geological Factors Can Lead to Poor Matches

The traditional tool interpreters have used to establish correspondences between subsurface stratigraphy and surface-measured seismic data has been synthetic seismograms calculated from well log data.

In some instances, however, it is difficult to create an optimal-quality match between a synthetic seismogram and seismic data.

We consider here possible geological reasons why poor matches sometimes occur – particularly in stratigraphic intervals where rock properties change laterally.


Consider the stratigraphic condition diagrammed on figure 1. Here a well penetrates a sand body that has a lateral dimension less than that of the dominant wavelength λ of an illuminating seismic wavefield.

Because sonic and density log data acquired in the well indicate a change in acoustic impedance at the top and base of the sand unit (interfaces A and B), a synthetic seismogram calculation using these logs will create a seismic reflection at the top and base of the sand.

However, surface seismic data will not show such reflection events, because the lateral dimension of the sand body is too small to create a reflected wavefront. For a seismic wavefield having a dominant wavelength λ, the sand body along this particular profile is a point diffractor, not a reflector.

You may see a diffraction in unmigrated seismic data, but after the data are migrated the sand body probably would appear as only a mild amplitude variation on one or two data traces – and would be ignored by an interpreter.

The principle illustrated by this example is that a synthetic seismogram will imply a reflection should be at the depth of the sand body, but migrated seismic data would not. This difference exists, even though the log data are correct and the synthetic seismogram calculation is accurate, because log data measure rock properties within only a meter or so of a wellbore.

In contrast, a seismic wavefield averages rock properties over an appreciable area having a diameter of the order of its dominant wavelength λ.


The reverse of this situation also can occur – that is, a synthetic seismogram can indicate no reflection is present at a depth where surface seismic data show a bold reflection.

A stratigraphic condition that could create such a discrepancy is illustrated on figure 2; here a well passes through a gap having a dimension of the order of λ between two laterally extensive sands.

Because log data acquired in the well indicate no impedance changes over the depth interval local to the sand bodies, a synthetic seismogram calculation will produce no reflection event. However, both migrated and unmigrated seismic data will show a reasonably continuous reflection event across the well position, with perhaps a slight amplitude anomaly at the well coordinate.

Again, the log data are correct, the synthetic seismogram calculation is correct and the seismic data are correct – yet the synthetic seismogram and the seismic data do not agree.

The difference is caused by the fact that log data measure geological properties over a distance of one meter or less, but seismic data respond to geological properties over a distance of several tens of meters.

If one-meter geology is significantly different from 50-meter and 100-meter geology, there often will be mismatches between synthetic seismograms and seismic reflection data.

Comments (0)

 

Geophysical Corner

Geophysical Corner - Satinder Chopra
Satinder Chopra, award-winning chief geophysicist (reservoir), at Arcis Seismic Solutions, Calgary, Canada, and a past AAPG-SEG Joint Distinguished Lecturer began serving as the editor of the Geophysical Corner column in 2012.

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.

VIEW COLUMN ARCHIVES

Image Gallery

See Also: Book

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4551 Book

See Also: Bulletin Article

The presence of hydrocarbon-bearing sandstones within the Eocene of the Forties area was first documented in 1985, when a Forties field (Paleocene) development well discovered the Brimmond field. Further hydrocarbons in the Eocene were discovered in the adjacent Maule field in 2009. Reservoir geometry derived from three-dimensional seismic data has provided evidence for both a depositional and a sand injectite origin for the Eocene sandstones. The Brimmond field is located in a deep-water channel complex that extends to the southeast, whereas the Maule field sandstones have the geometry of an injection sheet on the updip margin of the Brimmond channel system with a cone-shape feature emanating from the top of the Forties Sandstone Member (Paleocene). The geometry of the Eocene sandstones in the Maule field indicates that they are intrusive and originated by the fluidization and injection of sand during burial. From seismic and borehole data, it is unclear whether the sand that was injected to form the Maule reservoir was derived from depositional Eocene sandstones or from the underlying Forties Sandstone Member. These two alternatives are tested by comparing the heavy mineral and garnet geochemical characteristics of the injectite sandstones in the Maule field with the depositional sandstones of the Brimmond field and the Forties sandstones of the Forties field.

The study revealed significant differences between the sandstones in the Forties field and those of the Maule and Brimmond fields), both in terms of heavy mineral and garnet geochemical data. The Brimmond-Maule and Forties sandstones therefore have different provenances and are genetically unrelated, indicating that the sandstones in the Maule field did not originate by the fluidization of Forties sandstones. By contrast, the provenance characteristics of the depositional Brimmond sandstones are closely comparable with sandstone intrusions in the Maule field. We conclude that the injectites in the Maule field formed by the fluidization of depositional Brimmond sandstones but do not exclude the important function of water from the huge underlying Forties Sandstone Member aquifer as the agent for developing the fluid supply and elevating pore pressure to fluidize and inject the Eocene sand. The study has demonstrated that heavy mineral provenance studies are an effective method of tracing the origin of injected sandstones, which are increasingly being recognized as an important hydrocarbon play.

Desktop /Portals/0/PackFlashItemImages/WebReady/constraining-the-origin-of-reservoirs-formed.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 7966 Bulletin Article

See Also: CD DVD

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3980 CD-DVD

See Also: Field Seminar

The Hay River region in the Northwest Territories is one of the best locations in North America for the examination of Devonian carbonates, and the Pine Point mine site is one of the best localities for viewing the fabrics and geometries associated with hydrothermal dolomitization.

Desktop /Portals/0/PackFlashItemImages/WebReady/devonian-reef-facies-models-hydrothermal-dolomitization-and-tight-carbonate-reservoir-analogues-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 13438 Field Seminar

See Also: Short Course

Geomechanics – in both completions and drilling operations – has become a critical technology in the development of Unconventional Plays. This course presents the basics of oil field geomechanics and its application to unconventional developments; specifically, the role of stress, pore pressure, mechanical properties, and natural fractures on hydraulic fracturing operations.

Desktop /Portals/0/PackFlashItemImages/WebReady/sc-Geomechanics-For-Completion-Optimization-In-Unconventionals-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 14514 Short Course