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Volumetric Components of Sandstones
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Normal Distribution of Porosity in a Sandstone
with a Moderate Diagenetic Imprint

Normal Distribution of Porosity in a Sandstone
with a Moderate Diagenetic Imprint
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Porosity Distribution in Sampled Intervals of an 
Oligocene Sandstone, East Asia
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max phi = 22%
mean phi = 12.1%
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Porosity Distribution in an Inadequately Sampled Sand 
Population
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Lognormal Distribution of Porosity in Heavily 
Cemented Sandstones

Lognormal Distribution of Porosity in Heavily 
Cemented Sandstones
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Bimodal Distribution of Porosity in Chlorite-Coated 
Sandstones

Bimodal Distribution of Porosity in Chlorite-Coated 
Sandstones
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Applications of Porosity & Permeability Prediction

Exploration
pre-drill evaluation of resources in potential reservoirs

Production
pore volume, hydrocarbon pore volume, recoverable reserves, 
production rates, well spacing, fluid injection, etc.

Reservoir Simulation
“soft” input data

Basin Modeling
hydrocarbon migration
distribution of hydrocarbon saturation
thermal conductivity

Interpretation of Seismically Derived Attributes
porosity, lithology, fluid saturation        acoustic impedance
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Adequacies of Essential Geologic Controls of Oil & 
Gas for Plays/Prospects
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Oil Saturation 
Distribution after 

4 m.y. of 
Migration in a 
Carrier Bed

(k = 28md)
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Reservoir Properties (lithology, porosity, pore fluid)
vs Acoustic Impedance

(from Hardage, 1992)(from Hardage, 1992)
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Silica Cementation by Pressure Solution

(from Sibley and Blatt, 1976)(from Sibley and Blatt, 1976)
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Consolidation Porosity vs. Vp and Vs

(Vernik, 1998)(Vernik, 1998)

For moderately well-sorted sands “consolidation porosity” for clean arenites is 30%, and for arenites 29%.    Clean 
arenites have < 2% Vclay, arenites have 2% - 12% Vclay.   The transition from “unconsolidated” to “consolidated” sands
(at 30% to 29% porosity) is expressed by pronounced deflections in dry frame P- and S-wave velocities.    Fluid 
substitution modeling indicates a negligible fluid effect on velocity below the consolidation porosity of 29% to 30%.  
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Requirements for Adequate PredictionsRequirements for Adequate Predictions

1.High predictive accuracy should be achieved from 
a limited number of geological input parameters

2.Input parameters should be simple enough to be 
estimated from available geological information 
with reasonable confidence

3.Prediction should be based on multiple 
techniques
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SORTINGSORTING

Porosity of Artificially Mixed Sand
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SORTINGSORTING

Average Permeability (Darcys) of Artificially 
Mixed, Wet-Packed Sand
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Measured Permeability Correlates Well with Estimated 
Initial Permeability, Yacheng Field
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Compositional Controls on Diagenesis

(from Hayes, 1979)(from Hayes, 1979)
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RDM Classification of 
Sandstones,

Yacheng Field, South 
China Sea
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75%R75%R

65%R65%R
R =  rigid grains
D =  ductile grains
M =  detrital matrix
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Weakly-cemented (<10% cement) sandstones with a rigid 
grain content >85% generally have high porosity and 

permeability
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Weakly-cemented (<10% cement) sandstones with a 
rigid grain content <70% have low porosity and 

permeability

Measured Porosity (%)Measured Porosity (%)
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Measured Porosity Correlates Well
with Rigid Grain Content
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Measured Permeability Correlates Well
with Rigid Grain Content
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Permeability in weakly-cemented samples (<10% cement)
correlates well with detrital composition 

(rigid grain content)
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Compaction of Ductile Grains is a Function of Sorting

A ductile grain (brown) can be 
protected from compaction by 
bridging of rigid grains
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Example of random distribution of 
ductile grains in a sandstone
Although the abundance of ductile 
grains is 20%, only 15% are in 
deformable positions
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(from Franks, 1981; unpub.)(from Franks, 1981; unpub.)



R > 90
90 > R > 75; VRF < 15
75 > R > 60; VRF < 15
VRF > 15

In sandstones with 
VRFs > 25%, 

permeability is very low 
regardless 

of grain size, at 
depths > 10,000 ft
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Permeability is not a 
function of depth in the 

10,000 - 13,500 ft 
interval (in weakly 
cemented sands;

∆T/ ∆ Z ≈ 20°C/km)
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There is an excellent 
correlation between 
initial and present-
day permeability in 
weakly cemented 
sandstones (<10% 
cement), except for 
VRF-rich samples

There is an excellent 
correlation between 
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day permeability in 
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sandstones (<10% 
cement), except for 
VRF-rich samples
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Modes of Occurrence of Allogenic Clay in Sandstones 

(from Wilson and Pittman, 1977)(from Wilson and Pittman, 1977)
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Porosity and Permeability in Sandstone are Affected by the 
Amount and Mode of Occurrence of Clay Minerals, and by 

the Amount of Compaction 

(from Pittman, 1989)(from Pittman, 1989)
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There is no discernible correlation between  k  and detrital clay 
abundance but sandstones with  >20% of detrital clay generally 

have low  k
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Approaches to Reservoir Quality “Prediction”

GEOPHYSICAL
detection

GEOLOGICAL
prediction/assessment

correlation of log porosity
with seismic attributes “process-oriented” empirical

“hybrid”

petrology -
sedimentology -

burial history
statistical



Requirements for Adequate PredictionsRequirements for Adequate Predictions

High predictive accuracy should be achieved from 
a limited number of geological input parameters

Input parameters should be simple enough to be 
estimated from available geological information 
with reasonable confidence

Prediction should be based on multiple 
techniques

High predictive accuracy should be achieved from 
a limited number of geological input parameters

Input parameters should be simple enough to be 
estimated from available geological information 
with reasonable confidence

Prediction should be based on multiple 
techniques



Pre-Drill Prediction/Assessment of Porosity and 
Permeability in Mature Basins

yes

(modified from Bloch and Helmold, 1995)(modified from Bloch and Helmold, 1995)

Empirical Data Available

no

noyes

quartz-rich

sandstones
moderate/ low

detrital quartz

no yes

> 10% cement< 10% cement

qualitative
“high-low”

assessment
divide data set into
< 10% cement subset and
> 10% cement subset

potential for 
anomalously high φ and k ?

refer to
“anomalously

high φ and k” section

correlation between
seismic attributes and

petrophysical data (φ) ?

extrapolation
of φ away
from wells

geohistory analysis
(temperature &

pressure history)

depositional facies
analysis; sandstone

composition

φ - burial history
correlation,
“Exemplar”

wide range in
non-quartz cement

abundance?

determine controls (patterns) of cement 
distribution and abundance

if cement < 10%, use
multiple regression

analysis or φ - burial history

φ - depth correlation
or φ - burial history

correlation



“Global” Porosity Prediction Equation 
for  sandstones  with < 5% cement

φ =  18.60 + (4.73 x ln quartz) + 
(17.37/sorting) -

(3.8 x depth x 10-3) -
(4.65 x ln age)
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correlation coefficient:
R = 0.98

ideal prediction

(Scherer, 1987)



Approximate Ranges in Cement Volumes 
for Different Styles of Diagenesis

Approximate Ranges in Cement Volumes 
for Different Styles of Diagenesis

Range in Volume Range in Volume
Style of Diagenesis of Principal Cement of Ancillary Cements
Quartz dominated 5 -15% 3 - 5%,

(increases with <5% late carbonate*
temperature of burial)

Clay dominated 10 - 20% < 5% quartz,
(only illite dominated increases <5% late carbonate*
with temperature of burial)

Early clay/late quartz 5 - 10% clay, < 5% late carbonate*
< 5% quartz

Early carbonate/ < 20 - 30%
evaporite dominated (increases in proximity to

evaporites/saline lake deposits)
Zeolite 5 - 20% < 10% clay,

(increases with increasing < 10% late carbonate*
lithic content)

Range in Volume Range in Volume
Style of Diagenesis of Principal Cement of Ancillary Cements
Quartz dominated 5 -15% 3 - 5%,

(increases with <5% late carbonate*
temperature of burial)

Clay dominated 10 - 20% < 5% quartz,
(only illite dominated increases <5% late carbonate*
with temperature of burial)

Early clay/late quartz 5 - 10% clay, < 5% late carbonate*
< 5% quartz

Early carbonate/ < 20 - 30%
evaporite dominated (increases in proximity to

evaporites/saline lake deposits)
Zeolite 5 - 20% < 10% clay,

(increases with increasing < 10% late carbonate*
lithic content)

*Can be locally < 20 - 30%
From Primmer et al., 1997From Primmer et al., 1997
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Differences in burial 
history below 1500m 

affect porosity

Differences in burial 
history below 1500m 

affect porosity
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Porosity (%) = - 6.1 + 9.8 (1/sort) + 
0.17 (Rigid Grain Content)
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Log10 (PERM) = - 4.67 + 1.34 (grsz) + 
4.08 (1/sort) + 3.42 (R/100)
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Input Data
A. Outcrop samples and samples 

from closest wells
B. “Best estimate” burial/thermal 

history data

Porosity Prediction Approaches
Approach 1
1. Use “best estimate” thermal 

history data to  calculate 
present-day vitrinite reflectance 
values in target (based on Burnham & Sweeney  kinetic model)

2. Use Schmoker & Hester regression equations of  RO vs. porosity

Approach 2
1. Use “Exemplar” to simulate mean porosity and cement abundance evolution  
2. Calculate permeability
3. Use Monte Carlo analysis to obtain probabilistic porosity predictions

Input Data
A. Outcrop samples and samples 

from closest wells
B. “Best estimate” burial/thermal 

history data

Porosity Prediction Approaches
Approach 1
1. Use “best estimate” thermal 

history data to  calculate 
present-day vitrinite reflectance 
values in target (based on Burnham & Sweeney  kinetic model)

2. Use Schmoker & Hester regression equations of  RO vs. porosity

Approach 2
1. Use “Exemplar” to simulate mean porosity and cement abundance evolution  
2. Calculate permeability
3. Use Monte Carlo analysis to obtain probabilistic porosity predictions

Example of a Porosity & Permeability 
Prediction in Sandstones: Summary

Example of a Porosity & Permeability 
Prediction in Sandstones: Summary

RO - Porosity “Exemplar” 
regression

Po. ss 10th percentile 7% 9%
Po. ss 50th percentile 11% 14%
Po. ss 90th percentile 15% 19%

Mu. ss 10th percentile 13% 13%
Mu.ss 50th percentile 18% 19%
Mu.ss 90th percentile 23% 24%

Predicted Total Mean Porosity



Example of a Porosity & Permeability 
Prediction in Sandstones: Input

A.Expected Lithology in the Proposed Well
(Based on upthrusted outcrop samples and samples from closest wells)
1. Detrital composition: quartz-rich (> 85% quartz)
2. Texture: medium to coarse grain size (~0.50mm), moderate sorting

B.Diagenesis
Diagenetic History:

Siderite very early (<40O C) I
Kaolinite Compaction

Quartz >75o I
Fracturing (fractured quartz) I

Ankerite (minor ankerite in fractures)
Oil Emplacement (oil in fractures)

Uplift oxidation of siderite and precipitation of hematite

A.Expected Lithology in the Proposed Well
(Based on upthrusted outcrop samples and samples from closest wells)
1. Detrital composition: quartz-rich (> 85% quartz)
2. Texture: medium to coarse grain size (~0.50mm), moderate sorting

B.Diagenesis
Diagenetic History:

Siderite very early (<40O C) I
Kaolinite Compaction

Quartz >75o I
Fracturing (fractured quartz) I

Ankerite (minor ankerite in fractures)
Oil Emplacement (oil in fractures)

Uplift oxidation of siderite and precipitation of hematite
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0.00

Example of a Porosity & 
Permeability Prediction in 

Sandstones: Output

Pr
ob

ab
ilit

y

.000

.024

.018

.012

Forecast: porosity at  Ma
Frequency Chart

5.63 11.25 16.88 22.50

0

12

9

6

3.006

Frequency

0 Outliers500 Trials

Forecast:  porosity of Po. Fm. At 0 Ma
% Effective Porosity

P10 10% 6.75
20% 8.14
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P90 90% 15.65

Permeability = f (effective porosity, average
grain size of 0.50mm, <10% clay)
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97 8

VR values in the southern San Joaquin basin
do not correlate with depth of burial
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Reservoir Quality in Volcaniclastic Sandstones

VRF-bearing sand

>65% quartz
(+ other rigid grains)

dissolution of 
mafic VRFs

precipitation of 
complete extensive, 

& thick chlorite coats

lithic arkose or 
fieldspathic litharenite

mafic VRF-rich 
litharenite

plagioclase feldspar, 
glass shards, marine-

derived pore fluid

porosity destruction 
by  ductile 

deformation of VRFs
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Compaction Model with 50% Quartz:  50% Lithic Sands for 
Slate, Shale and Weathered Basalt
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In moderately-sorted, VRF-rich (>35% VRFs) sandstones, reservoir 
quality is drastically reduced below approximately 6,000 ft
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Comparison of Geologic & Experimental Compaction
Contact index and contact types  as a function of simulated overburden pressure, for compaction 

tests conducted with Eagle River sand and triaxial overburden apparatus
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contact index
tangential
long
concavo-convex BELUGA 7136 ftBELUGA 7136 ft

φ = 0.5%φ = 0.5%

(from Kurkjy, 1988)(from Kurkjy, 1988)
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Approach to Reservoir Quality Prediction in 
Sandstones with a Wide Range 

of Pore-Filling Cements

Approach to Reservoir Quality Prediction in 
Sandstones with a Wide Range 

of Pore-Filling Cements

Calibration Data Set

< 10% Cement
Predictive Model Based
on Multiple Regression

Analysis

> 10% Cement
Predictive Model Based on

Understanding the Origin and 3D
Distribution Pattern of Cement(s)



Conclusions

Occurrence and Abundance of Laumontite in Middle 
Eocene-Late Oligocene Arkosic Sandstones of the San 
Emigdio Area Exhibit Distinct Patters:

Temperature >215O F (~100O C)

Geologic Time Most Abundant in Upper Oligocene

Areal Distribution South of the White Wolf Fault;  
Abundance Decreases  
Systematically from N to S  
(Increasing Distance from Volcanic Center ?)

Occurrence and Abundance of Laumontite in Middle 
Eocene-Late Oligocene Arkosic Sandstones of the San 
Emigdio Area Exhibit Distinct Patters:

Temperature >215O F (~100O C)

Geologic Time Most Abundant in Upper Oligocene

Areal Distribution South of the White Wolf Fault;  
Abundance Decreases  
Systematically from N to S  
(Increasing Distance from Volcanic Center ?)



Measured vs 
Predicted Porosity

Regression on Detrital Matrix
and Depth for All Samples

95% Confidence
Band +/- 8%
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Measured vs 
Predicted Porosity

Regression on Detrital Matrix
and Depth for Samples

with <10% Cement

Measured vs 
Predicted Porosity

Regression on Detrital Matrix
and Depth for Samples

with <10% Cement

95% Confidence
Band +/-3.5%
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Three Prediction SubsetsThree Prediction Subsets
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Clinoptilolite 
Occurs

Only Below 
215o F
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Laumontite
Occurs

Only Above 
215o F
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0

Chlorite/Smectite and Laumontite Display a Sympathetic 
Relationship on a Thin-Section Scale

Chlorite/Smectite and Laumontite Display a Sympathetic 
Relationship on a Thin-Section Scale
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Laumontite and 
Carbonate Cements

Are Mutually 
Exclusive

Laumontite and 
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Some of the Laumontite is 
Geologically Very Young
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At Temperatures > 225o F, Zeolite Abundance in Zemorrian ss (late early & 
late Oligocene) Decreases from North to South (?)
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