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Volumetric Components of Sandstones
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Normal Distribution of Porosity in a Sandstone
with a Moderate Diagenetic Imprint
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(from Bloch et al., 2002)




Porosity Distribution in Sampled Intervals of an
Oligocene Sandstone, East Asia
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Porosity Distribution in an Inadequately Sampled Sand
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Lognormal Distribution of Porosity in Heavily
Cemented Sandstones

Ror Formation; 15,420 - 15,750 ft.
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(from Bloch et al., 2002)




Bimodal Distribution of Porosity in Chlorite-Coated
Sandstones
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Applications of Porosity & Permeability Prediction

» EXxploration
. pre-drill evaluation of resources in potential reservoirs

» Production

. pore volume, hydrocarbon pore volume, recoverable reserves,
production rates, well spacing, fluid injection, etc.

» Reservoir Simulation
. “soft” input data
» Basin Modeling
. hydrocarbon migration
. distribution of hydrocarbon saturation
. thermal conductivity
» Interpretation of Seismically Derived Attributes
. porosity, lithology, fluid saturation ——» acoustic impedance




Adequacies of Essential Geologic Controls of Oil &
Gas for Plays/Prospects
PLAY

PROSPECT

a. TRAP - SEAL - TIMING

Closure Volume
Seal
Timing

b.____ RESERVOIR - POROSITY - PERMEABILITY

? RESERVOIR FACIES THICKNESS (no nondeposition, facies
change, truncation, or faulting; adequate net/gross

? POROSITY (primary or secondary, not plugged or cemented)
? PERMEABILITY & CONTINUITY

c. ___ SOURCE - MATURATION - MIGRATION
Organic Quantity & Quality
Maturation
Migration

d._____ PRESERVATION - HC QUALITY - RECOVERY

Preservation

Hydrocarbon Quality & Concentration
Recovery

(from White, 1993)
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from Kacewicz, 1993



Reservoir Properties (lithology, porosity, pore fluid)
vs Acoustic Impedance
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Silica Cementation by Pressure Solution
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(from Sibley and Blatt, 1976)




Consolidation Porosity vs. V, and V,
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For moderately well-sorted sands “consolidation porosity” for clean arenites is 30%, and for arenites 29%. Clean
arenites have < 2% V,,, arenites have 2% - 12% V,,. The transition from “unconsolidated” to “consolidated” sands
(at 30% to 29% porosity) is expressed by pronounced deflections in dry frame P- and S-wave velocities. Fluid
substitution modeling indicates a negligible fluid effect on velocity below the consolidation porosity of 29% to 30%.

(Vernik, 1998)
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Requirements for Adequate Predictions

1.High predictive accuracy should be achieved from
a limited number of geological input parameters

2.Input parameters should be simple enough to be
estimated from available geological information
with reasonable confidence

3.Prediction should be based on multiple
techniques



Porosity of Artificially Mixed Sand

SIZE —» COARSE MEDIUM FINE VERY FINE
v SORTING UPPER | LOWER | UPPER | LOWER | UPPER | LOWER | UPPER | LOWER
EXTREMELY

WELL 43.1 428 | 41.7 | 413 | 413 | 435 | 423 | 43.0

SORTED

VERY

WELL

SORTED 408 | 415 | 40.2 | 40.2 | 398 | 408 | 41.2 | 41.8

WELL

SORTED 38.0 | 384 | 381 | 38.8 | 39.1 | 39.7 | 40.2 | 39.8

MODERATELY
SORTED 32.4 33.3 | 342 | 349 | 339 | 343 35.6 | 33.1

POORLY
SORTED 27 1 pA R 315 | 313 | 304 | 31.0 30.5 | 34.2

roorly | 286 | 252 | 258 | 23.4 | 285 | 29.0 | 301 | 32:6

SORTED

(from Beard and Weyl, 1973)



Average Permeability (Darcys) of Artificially
Mixed, Wet-Packed Sand

SIZE —» COARSE MEDIUM FINE VERY FINE
+ SORTING UPPER | LOWER | UPPER | LOWER | UPPER | LOWER | UPPER | LOWER
EXTREMELY
WELL ar5 | 238 | 119 | 59 | 30 | 15 | 74 | 37
SORTED
VERY
WELL
JWELL | 458 | 239 | 115 | 57 | 29 | 14 | 72 | 36
WELL
SNELL -l 302 | 151 | 76 | 38 | 19 | 94 | 47 | 24
MODERATELY * *
DERATELY| 119 | 55 | 28 | 14 | 7.0 | 35 [ 21% | 1.1
POORLY * * * *
POORLY a5 | 23 | 12 | 60 | 37| 1.9 | 0.93* | 0.46
SOBRLY 14 | 70 | 35 | 1.7 | 0.83*| 0.42* | 0.21* | 0.10
SORTED

* from formula of Krumbein & Monk (1942)

(from Beard and Weyl, 1973)




Measured Permeability Correlates Well with Estimated

Logarithm of Estimated Initial Permeability (md)

Initial Permeability, Yacheng Field
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Compositional Controls on Diagenesis

Quartz

chemically
and mechanically
stable

chemically
and mechanically
unstable

chemically unstable

% mechanically stable

Feldspars Rock fragments

(from Hayes, 1979)




RDM Classification of
Sandstones,
Yacheng Field, South

China Sea

R = rigid grains
D = ductile grains
M = detrital matrix

upper medium and coarser grained ss (median diameter > 0.36 mm)

R>75% and M<2% —» k>100md (afew exceptions)
75% >R >65% and M <5% — k<100 md (a few exceptions)

R <65% —» k<1md (afew exceptions)

(Bloch, 1991)




Weakly-cemented (<10% cement) sandstones with a rigid
grain content >85% generally have high porosity and

permeability
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Weakly-cemented (<10% cement) sandstones with a
rigid grain content <70% have low porosity and

Log of Permeability (md)
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Measured Porosity Correlates Well

Measured Porosity (%)
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Measured Permeability Correlates Well

Logarithm of Measured PermeabilityY (Md)

3.5
3.0
2.5
2.0
1.5
1.0
0.5

1
(=]
(=]

-0.5
-1.0
-1.5
-2.0
-2.5

with Rigid Grain Content

/

/

o Medium - to coarse-grained
shoreline deposits

R =0.85

Fine- to medium-grained
intertidal flat deposits

Fine- to medium-grained delta
front/mouth bar deposits

Fine- to medium-grained
* bioturbated fan delta front/
shelfal deposits

® Sandy distal fan

@ Fine-grained paludal -
lacustrine deposits

80 90
Rigid Grain Content (%)

1
100




Permeability in weakly-cemented samples (<10% cement)
correlates well with detrital composition
(rigid grain content)
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Compaction of Ductile Grains is a Function of Sorting

» A ductile grain (brown) can be
protected from compaction by
bridging of rigid grains

» Example of random distribution of
ductile grains in a sandstone

» Although the abundance of ductile
grains is 20%, only 15% are in
deformable positions

(from Franks, 1981; unpub.)




In sandstones with
VRFs > 25%,
permeability is very low
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Permeability is not a
function of depth in the
10,000 - 13,500 ft
interval (in weakly
cemented sands;
AT/ A Z ~ 20°C/km)
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There is an excellent
correlation between
initial and present-
day permeability in
weakly cemented
sandstones (<10%
cement), except for
VRF-rich samples

Samples with >15 % VRFs
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Modes of Occurrence of Allogenic Clay in Sandstones
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Porosity and Permeability in Sandstone are Affected by the
Amount and Mode of Occurrence of Clay Minerals, and by
the Amount of Compaction
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There is no discernible correlation between k and detrital clay
abundance but sandstones with >20% of detrital clay generally

have low k

§ . e shallow samples (< 5,000 ft)
? 3.0 __%. . intermediafe burial depths (5,000 - 10,000 ft)
e >° ° ¢ deeply-buried samples (>10,000 ft)
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g | ..
= A X
5 %
o 0.0 1% x" N
Y S
(o) § ° X &
o . X
o A X x %Xx %X X x

-1 _5 <X o o0 . )~ 4 x 90¢ X
[ N ] x x x x
0 10 20 30 40

Detrital Clay %
(Bloch, 1994)




Approaches to Reservoir Quality “Prediction”

GEOPHYSICAL GEOLOGICAL
detection prediction/assessment

correlation of log porosity

with seismic attributes process-oriented empirical

“hybrid”

petrology -
sedimentology -
burial history




Requirements for Adequate Predictions

» High predictive accuracy should be achieved from
a limited number of geological input parameters

» Input parameters should be simple enough to be
estimated from available geological information
with reasonable confidence

» Prediction should be based on multiple
techniques



Pre-Drill Prediction/Assessment of Porosity and
Permeability in Mature Basins

correlation between no
seismic attributes and

petrophysical data (¢) ? Empirical Data Available

extrapolation geohistory analysis depositional facies
of ¢ away (temperature & analysis; sandstone

‘ ,

yes potential for
anomalously high ¢ and k ?

refer to
“anomalously
high ¢ and k” section 0 ial hi y wide range in
non-quartz cement
“Exemplar” abundance?

if cement < 10%, use ¢ - depth correlation |_qualitative |
multiple regression or ¢ - burial history “high-low”
i i i assessment

angd () d H
__T_-' correlation divide data set into
<10% cement < 10% cement subset and BV X101 G111

> 10% cement subset

determine controls (patterns) of cement

(modified from Bloch and Helmold, 1995)




“Global” Porosity Prediction Equation
for sandstones with < 5% cement

¢ = 18.60 + (4.73 x In quartz) +
(17.37/sorting) -

(3.8 x depth x 10-3) -

(4.65 x In age)

(Scherer, 1987)
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Approximate Ranges in Cement Volumes
for Different Styles of Diagenesis

Range in Volume Range in Volume
Style of Diagenesis of Principal Cement of Ancillary Cements
Quartz dominated 5-15% 3 - 5%,
(increases with <5% late carbonate
temperature of burial)
Clay dominated 10 - 20% < 5% quartz,
(only illite dominated increases <5% late carbonate
with temperature of burial)
Early clay/late quartz 5 - 10% clay, < 5% late carbonate
< 5% quartz
Early carbonate/ <20-30%
evaporite dominated (increases in proximity to
evaporites/saline lake deposits)
Zeolite 5-20% <10% clay,
(increases with increasing <10% late carbonate

lithic content)

Can be locally < 20 - 30%
From Primmer et al., 1997
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onset of the project

® Predicted pre-drill porosities
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Porosity (%) = -6.1 + 9.8 (1/sort) +

20
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Measured Porosity (%)

0.17 (Rigid Grain Content)
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intertidal flat deposits
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® Sandy distal fan

o .

95% Confidence @ Fine-grained paludal -
Interval lacustrine deposits
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“Predicted” Porosity (%) (Bloch, 1994)



Log,, (PERM) = - 4.67 + 1.34 (grsz) +
4.08 (1/sort) + 3.42 (R/100)

3.5 | /

R? = 0.86
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Example of a Porosity & Permeability
Prediction in Sandstones: Summary

Input Data
A. Outcrop samples and samples Predicted Total Mean Porosity
from closest wells Ro - Porosity ~ “Exemplar”
B. “Best estimate” burial/thermal _ regression
history data Po.ss 10t percentile 7% 9%
Po.ss 50t percentile 1% 14%
Porosity Prediction Approaches Po.ss 90" percentile 15% 19%
/‘T\pptjgzcg;st estimate” thermal Mu.ss 10" percentile 13% 13%
history data to calculate Muss 50" percentile 187 19%
Mu.ss 90t percentile 23% 24%

present-day vitrinite reflectance
values in target (based on Burnham & Sweeney kinetic model)

2. Use Schmoker & Hester regression equations of R, vs. porosity

Approach 2
1. Use “Exemplar” to simulate mean porosity and cement abundance evolution

2. Calculate permeability
3. Use Monte Carlo analysis to obtain probabilistic porosity predictions




Example of a Porosity & Permeability
Prediction in Sandstones: Input

A.Expected Lithology in the Proposed Well

(Based on upthrusted outcrop samples and samples from closest wells)
1. Detrital composition: quartz-rich (> 85% quartz)
2. Texture: medium to coarse grain size (~0.50mm), moderate sorting

B.Diagenesis
Diagenetic History:
Siderite very early (<40° C) I
Kaolinite Compaction
Quartz >75° I
Fracturing (fractured quartz) I
Ankerite (minor ankerite in fractures)
Oil Emplacement (oil in fractures)
Uplift oxidation of siderite and precipitation of hematite




Predicted Evolution of Effective Porosity
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500 Trials
.024

Probability

.018

.012

.006

.000

Forecast: porosity of Po. Fm. At 0 Ma
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Frequency Chart

Example of a Porosity &
Permeability Prediction in
Sandstones: Output

Permeability = f (effective porosity, average
grain size of 0.50mm, <10% clay)
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VR values in the southern San Joaquin basin
do not correlate with depth of burial
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(from Dow, 1978)




Reservoir Quality in Volcaniclastic Sandstones

VRF-bearing sand

£10% VRFs | >30% VRFs

>65% quartz lithic arkose ¢ i i
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Compaction Model with 50% Quartz: 50% Lithic Sands for
Slate, Shale and Weathered Basalt
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In moderately-sorted, VRF-rich (>35% VRFs) sandstones, reservoir
quality is drastically reduced below approximately 6,000 ft
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Comparison of Geologic & Experimental Compaction

Contact index and contact types as a function of simulated overburden pressure, for compaction
tests conducted with Eagle River sand and triaxial overburden apparatus
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Approach to Reservoir Quality Prediction in
Sandstones with a Wide Range
of Pore-Filling Cements

Calibration Data Set

<10% Cement >10% Cement
Predictive Model Based Predictive Model Based on
on Multiple Regression Understanding the Origin and 3D
Analysis Distribution Pattern of Cement(s)




Conclusions

Occurrence and Abundance of Laumontite in Middle
Eocene-Late Oligocene Arkosic Sandstones of the San
Emigdio Area Exhibit Distinct Patters:

Temperature >215°F (~100° C)
Geologic Time Most Abundant in Upper Oligocene

Areal Distribution South of the White Wolf Fault;
Abundance Decreases
Systematically from N to S
(Increasing Distance from Volcanic Center ?)
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Predicted Porosity Band

Regression on Detrital Matrix
and Depth for All Samples
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Three Prediction Subsets
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Clinoptilolite
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Chlorite/Smectite and Laumontite Display a Sympathetic
Relationship on a Thin-Section Scale
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Carbonate Cements  —
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Some of the Laumontite is
Geologically Very Young
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At Temperatures > 225° F, Zeolite Abundance in Zemorrian ss (late early &
late Oligocene) Decreases from North to South (?)

White Wolf
Fault

0
0 18 Y@

— . ) 7(2?3 v (7) Res 11-24
ejon 23 12-30
Block L 4 V)
0 B_1( ) kel ) A
0 (13)
)
; ) DV_1 P-1
0
C2 v ? Sketch
Area
18 laumontite abundance (%) 2 Km
| I——

W (7) number of samples

20-30 well number




