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ConclusionsConclusions
anomalous porosity - statistically higher than 
porosity values occurring in “typical” 
sandstone reservoirs of a given lithology, age, 
and burial / temperature history

evaluation of anomalous p&p preserved by 
chlorite coats is a two-step process:

evaluation of the likelihood of occurrence of chlorite coats 
as a function of sediment provenance and depositional 
facies
diagenetic modeling to determine the constraints required 
to preserve economically viable p&p



ConclusionsConclusions
Impact of hydrocarbon emplacement on p&p 
can be quantified, prior to drilling, by 
integration of basin modeling and reservoir 
quality modeling

p&p preservation due to fluid overpressure
can be quantified, prior to drilling, by 
integration of basin modeling and reservoir 
quality modeling



ConclusionsConclusions
Secondary porosity

Unquestionable ubiquity

Importance overemphasized

Effect on reservoir quality prediction
Extent of preservation controlled by the same geological 
parameters  as primary p&p

Implicitly accounted for by calibration data sets used in empirical 
predictions

Limited impact on reservoir scale - “redistributional”, not effective 
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Normal Distribution of Porosity in a Sandstone
with a Moderate Diagenetic Imprint

Normal Distribution of Porosity in a Sandstone
with a Moderate Diagenetic Imprint
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Lognormal Distribution of Porosity in Heavily 
Cemented Sandstones

Lognormal Distribution of Porosity in Heavily 
Cemented Sandstones
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Bimodal Distribution of Porosity in Chlorite-
Coated Sandstones

Bimodal Distribution of Porosity in Chlorite-
Coated Sandstones
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Frequency Distribution of Porosity in
U. Jurassic Sandstones, Central Graben

(Ula & Gyda Fields), North Sea

Frequency Distribution of Porosity in
U. Jurassic Sandstones, Central Graben
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Origin of Chlorite CoatsOrigin of Chlorite Coats

depositionally-controlled Fe-rich coats in high-energy, 
shallow-marine sandstones shelf (Ehrenberg, 1993)

depositionally-controlled coats in turbidites
(Houseknecht & Ross, 1991)

down-slope transport of coated shallow-marine sands 
(Sullivan et al., 1999) 

provenance-controlled (VRFs) coats 
(Thomson, 1979; Pittman et al., 1992)

Mg-rich coats formed by interaction of precursor 
clay/iron oxide grain rims with Mg-rich saline brines 
(Kugler & McHugh, 1990)

depositionally-controlled Fe-rich coats in high-energy, 
shallow-marine sandstones shelf (Ehrenberg, 1993)

depositionally-controlled coats in turbidites
(Houseknecht & Ross, 1991)

down-slope transport of coated shallow-marine sands 
(Sullivan et al., 1999) 

provenance-controlled (VRFs) coats 
(Thomson, 1979; Pittman et al., 1992)

Mg-rich coats formed by interaction of precursor 
clay/iron oxide grain rims with Mg-rich saline brines 
(Kugler & McHugh, 1990)



Effect of Grain Coating & Burial History on 
Porosity Preservation - Diagenetic Models
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Effect of Grain Coating & Burial History on 
Porosity Preservation - Diagenetic Models
Effect of Grain Coating & Burial History on 
Porosity Preservation - Diagenetic Models
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Prediction of p&p Preservation by 
Chlorite Coats 

Prediction of p&p Preservation by 
Chlorite Coats 

the effect of coats on p&p cannot be 
accurately quantified prior to drilling

the distribution pattern of coated sands is a 
function of coat origin

the potential impact of coats on p&p can be 
evaluated by diagenetic models 
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Frequency Distribution of Porosity in
U. Jurassic Sandstones, Central Graben

(Ula & Gyda Fields), North Sea
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ConclusionsConclusions
Microquartz Coats

Geological Prediction of Anomalous p&p 
due to Microquartz Coats in Not Possible in 
Frontier Basins

Distribution of sponge spicule-sourced coats -
mapping sponge spicule-prone sedimentary 
facies and their reworking paths into sand-rich 
depo systems
Distribution of coats sourced by dissolution of
volcanic glass - occurrence within specific 
isochronous sandy intervals of the 
sedimentary column

Microquartz Coats
Geological Prediction of Anomalous p&p 
due to Microquartz Coats in Not Possible in 
Frontier Basins

Distribution of sponge spicule-sourced coats -
mapping sponge spicule-prone sedimentary 
facies and their reworking paths into sand-rich 
depo systems
Distribution of coats sourced by dissolution of
volcanic glass - occurrence within specific 
isochronous sandy intervals of the 
sedimentary column

from Aase et al., 1996from Aase et al., 1996
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Effect of HC Emplacement
on Preservation of p&p

Effect of HC Emplacement
on Preservation of p&p

effect of wettability on cementation

differences in texture, composition, and 
thermal exposure in samples from water legs 
versus hydrocarbon legs

poor control on hydrocarbon filling and 
leakage histories

effect of wettability on cementation

differences in texture, composition, and 
thermal exposure in samples from water legs 
versus hydrocarbon legs

poor control on hydrocarbon filling and 
leakage histories

Pitfalls:



Effect of HC Emplacement
on Preservation of p&p

Effect of HC Emplacement
on Preservation of p&p

silica provided externally by advection (“open 
system”) - cementation stopped

silica supplied internally (“closed system”) in 
water-wet reservoirs - cementation retarded, 
but not stopped

silica supplied internally (“closed system”) in 
oil-wet reservoirs - cementation stopped 

silica provided externally by advection (“open 
system”) - cementation stopped

silica supplied internally (“closed system”) in 
water-wet reservoirs - cementation retarded, 
but not stopped

silica supplied internally (“closed system”) in 
oil-wet reservoirs - cementation stopped 

From Worden et al. (1998)



Mid-Tertiary Hydrocarbon Emplacement 
Preserved 9% of Effective Porosity
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Preserved 9% of Effective Porosity
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Effect of Overpressure on Porosity 
Preservation:  Model Assumptions
Effect of Overpressure on Porosity 
Preservation:  Model Assumptions

Compaction and quartz cementation are the primary 
controls on reservoir quality

Linear burial to 4000 m at 30 ºC/km

Present-day overpressure near fracture gradient
– “Shallow” scenario: develops 0 - 800 m
– “Deep” scenario: develops 2400 - 4000 m

Sandstones are medium grained, well sorted, and “clean”

Composition of sandstones:
– “Quartzose”:  Q84F8L8
– “Lithic”:  Q50  F0L50  (L = shale clasts)

Compaction and quartz cementation are the primary 
controls on reservoir quality

Linear burial to 4000 m at 30 ºC/km

Present-day overpressure near fracture gradient
– “Shallow” scenario: develops 0 - 800 m
– “Deep” scenario: develops 2400 - 4000 m

Sandstones are medium grained, well sorted, and “clean”

Composition of sandstones:
– “Quartzose”:  Q84F8L8
– “Lithic”:  Q50  F0L50  (L = shale clasts)



Quartz Cement Abundance Vs. Effective Stress at 
3.5 - 6.0 km, North Sea HPHT Clastic Reservoirs
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Is the change in porosity gradient due to
secondary porosity or provenance/facies-controlled 

change in lithology?

Is the change in porosity gradient due to
secondary porosity or provenance/facies-controlled 

change in lithology?
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Plagioclase 
Dissolution Porosity

Plagioclase 
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ConclusionsConclusions
much of the plagioclase dissolution porosity 
(PDP) at depths >5000 ft may be inherited 
shallow PDP

if deep PDP is mostly inherited, there may be 
no aluminum problem

the presence of PDP does not have a major 
impact on the accuracy of empirical predrill 
predictions of porosity in sandstones

much of the plagioclase dissolution porosity 
(PDP) at depths >5000 ft may be inherited 
shallow PDP

if deep PDP is mostly inherited, there may be 
no aluminum problem

the presence of PDP does not have a major 
impact on the accuracy of empirical predrill 
predictions of porosity in sandstones



The DatasetThe Dataset
216 Middle Eocene - Lower Miocene arkosic 
sandstone samples from 16 wells in southern San 
Joaquin basin (Metralla, San Emigdio, Vedder, and Jewett)

depth range:  2480 ft - 14,710 ft

similar composition

secondary porosity formed predominately by 
dissolution of plagioclase

300 counts per thin-section
1000 counts on subset of 39 thin-sections

216 Middle Eocene - Lower Miocene arkosic 
sandstone samples from 16 wells in southern San 
Joaquin basin (Metralla, San Emigdio, Vedder, and Jewett)

depth range:  2480 ft - 14,710 ft

similar composition

secondary porosity formed predominately by 
dissolution of plagioclase

300 counts per thin-section
1000 counts on subset of 39 thin-sections



Reliability of Point-Count DataReliability of Point-Count Data

subjectivity of point-counting 
secondary porosity 
(primary vs. secondary, intragranular vs. moldic)

errors implicit in point counting
(accuracy is a function of true abundance of 
pores and the number of point counts)

subjectivity of point-counting 
secondary porosity 
(primary vs. secondary, intragranular vs. moldic)

errors implicit in point counting
(accuracy is a function of true abundance of 
pores and the number of point counts)



QFL Diagram of Feldspathic Sandstones, 
Southern San Joaquin Basin, California

QFL Diagram of Feldspathic Sandstones, 
Southern San Joaquin Basin, California
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Intragranular
φ > 50% of PDP

in only 8%
of samples
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ConclusionsConclusions

Moldic porosity dominates PDP in 
shallow sandstones (<5000 ft)

Intergranular porosity dominates PDP 
in deeper sandstones (>5000 ft)

Moldic porosity dominates PDP in 
shallow sandstones (<5000 ft)

Intergranular porosity dominates PDP 
in deeper sandstones (>5000 ft)



Proposed Mechanism for PDP FormationProposed Mechanism for PDP Formation

< 5000 feet
mostly moldic PDP generated

- precipitation of some kaolinite
- AI is mobilized beyond thin-section scale

> 5000 feet
mostly intragranular PDP generated

- shielding of some shallow moldic PDP by rigid 
grain framework + cement

- collapse of some shallow moldic PDP
- precipitation of authigenic clays;

redistributional secondary porosity
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- AI is mobilized beyond thin-section scale

> 5000 feet
mostly intragranular PDP generated

- shielding of some shallow moldic PDP by rigid 
grain framework + cement

- collapse of some shallow moldic PDP
- precipitation of authigenic clays;

redistributional secondary porosity



Generation of PDP in the Subsurface -
Approximate Balance Calculations
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Evolution of Plagioclase Dissolution PorosityEvolution of Plagioclase Dissolution Porosity

Surface and shallow subsurface dissolution
Major dissolution
Net porosity gain likely
Meteoric water

Deep dissolution
Minor dissolution
“Redistributional” secondary porosity
Silicate hydrolysis (?), organic acids (?)

Gradual collapse of primary and 
moldic porosity
Gradual collapse of primary and 
moldic porosity
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Fan Delta Model, Cross-SectionFan Delta Model, Cross-Section
Proximal
Fan Delta

from McGowen & Bloch, 1985from McGowen & Bloch, 1985
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Depositional Facies Control of Porosity 
and Permeability, Prudhoe Bay Field

Depositional Facies Control of Porosity 
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Generalized Burial History of Ivishak Sandstone,
Prudhoe Bay Area

Generalized Burial History of Ivishak Sandstone,
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Generation of Secondary Porosity 
during Subaerial Exposure

Generation of Secondary Porosity 
during Subaerial Exposure
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Unconformities and Secondary Porosity
Ivishak ss - Prudhoe Bay (N. Slope of Alaska)

Unconformities and Secondary Porosity
Ivishak ss - Prudhoe Bay (N. Slope of Alaska)

favorable reservoir quality of zone 4 of the Ivishak 
sandstone due to secondary porosity formed by meteoric 
water leaching of chert beneath the Neocomian 
unconformity 

macroporosity formed by chert dissolution “tends to 
increase toward the Neocomian unconformity”

“a lateral increase in core porosity (from 15% at about 30 km 
from the unconformity to 30% near the unconformity) and in 
permeability (from 50 md at about 30 km  from  the 
unconformity to 800 md near the unconformity).  This 
increase occurs within the fluvial facies (zone 4) of nearly 
uniform grain size and framework composition  (chert 
litharenite)”

favorable reservoir quality of zone 4 of the Ivishak 
sandstone due to secondary porosity formed by meteoric 
water leaching of chert beneath the Neocomian 
unconformity 

macroporosity formed by chert dissolution “tends to 
increase toward the Neocomian unconformity”

“a lateral increase in core porosity (from 15% at about 30 km 
from the unconformity to 30% near the unconformity) and in 
permeability (from 50 md at about 30 km  from  the 
unconformity to 800 md near the unconformity).  This 
increase occurs within the fluvial facies (zone 4) of nearly 
uniform grain size and framework composition  (chert 
litharenite)” (from Shanmugam & Higgins, 1988)(from Shanmugam & Higgins, 1988)
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Cross Section is Interpreted to Show Porosity 
Increase with Increasing Proximity to Unconformity

Cross Section is Interpreted to Show Porosity 
Increase with Increasing Proximity to Unconformity
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There is a “Casual” Correlation between Porosity 
and Proximity to Unconformity

There is a “Casual” Correlation between Porosity 
and Proximity to Unconformity
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Average Permeability of the Ivishak 
Sandstone Correlates Well with Grain Size

Average Permeability of the Ivishak 
Sandstone Correlates Well with Grain Size

Proportion of Medium- & Coarser-Grained Sandstones (%)Proportion of Medium- & Coarser-Grained Sandstones (%)
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depth = 9,300 ft;  grain size = 0.40mm; mod. well sorted;  quartz cement = 6%; 
modeled TS φ = 20%; est. ambient core φ = 23%      In situ φ = 22%;  in situ k = 850md

depth = 9,300 ft;  grain size = 0.40mm; mod. well sorted;  quartz cement = 6%; 
modeled TS φ = 20%; est. ambient core φ = 23%      In situ φ = 22%;  in situ k = 850md

Modeled Porosity Evolution of the 
Ivishak Sandstone

Modeled Porosity Evolution of the 
Ivishak Sandstone



Reservoir Quality of the Ivishak Sandstone is 
Controlled by Texture and Burial History

Reservoir Quality of the Ivishak Sandstone is 
Controlled by Texture and Burial History
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