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Figure 5. Atwater Valley (AT) Merganser 37 field. (A) Location map of AT Merganser 37 and Mississippi Canyon (MC) 961 Q fields. (B)
Seismic profile. Reprinted with permission of Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of
the field. ILD = deep induction.

Merganser Field, Figure 5



Figure 6. Mississippi Canyon 961 Q field. Gamma-ray (GR) and resistivity log. See Figure 5A for location map and Figure 5B for seismic
profile across the field. See Figure 4 for the regional setting of the field. ILD = deep induction.

Q Field, Figure 6



Figure 7. Atwater Valley (AT) 261 Vortex field. (A) Location map of AT 261 Vortex field and AT 349/Lloyd Ridge 309 Jubilee fields. (B)
Seismic profile. Reprinted with permission of Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of
the field. ILD = deep induction.

Vortex Field, Figure 7



Figure 8. Atwater Valley 349/Lloyd Ridge 309 Jubilee field. Gamma-ray (GR) and resistivity log. See Figure 7A for location map and Figure
7B for seismic profile across the field. See Figure 4 for the regional setting of the field. ILD = deep induction.

Jubilee Field, Figure 8



Figure 9. Atwater Valley (AT) 426 Bass Lite field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger. (C)
Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Bass Lite Field, Figure 9



Figure 10. Atwater Valley (AT) 574–575 Neptune field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger. (C)
Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Neptune Field, Figure 10



Figure 11. DeSoto Canyon (DC) 4 Dalmatian North Field. (A) Location map. (B) Seismic profile across the DC 4 Dalmatian North Field.
Reprinted with permission of Schlumberger. See Figure 4 for the regional setting of the field.

Dalamatian North Field, Figure 11



Figure 12. DeSoto Canyon (DC) 48 Dalmatian field. (A) Seismic profile. Reprinted with permission of Schlumberger. (B) Gamma-ray (GR) and
resistivity log. See Figure 11A for location of seismic and well, and Figure 4 for the regional setting of the field. ILD = deep induction.

Dalmatian Field, Figure 12
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Figure 13. DeSoto Canyon (DC) 134 Dalmatian South Field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Dalmatian South Field, Figure 13



Figure 14. DeSoto Canyon (DC) 353 Vicksburg field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger.
(C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Vicksburg Field, Figure 14



Figure 15. DeSoto Canyon (DC) 618 San Jacinto field. (A) Location map of DC 618 San Jacinto and DC 621 Spiderman fields. (B) Seismic
profile. Reprinted with permission of Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field.
ILD = deep induction.

San Jacinto Field, Figure 15



Figure 16. DeSoto Canyon 621 Spiderman field. Gamma-ray (GR) and resistivity log. Location of well is shown in Figure 15A. See Figure
15A for location map and Figure 15B for seismic profile. See Figure 4 for the regional setting of the field. ILD = deep induction.

Spiderman Field, Figure 16



Figure 17. Lloyd Ridge (LL) 1 Mondo Northwest field. (A) Location map. (B) Seismic profile. (C) Gamma-ray (GR) and resistivity log. See
Figure 4 for the regional setting of the field. ILD = deep induction.

Mondo Northwest Field, Figure 17



Figure 18. Lloyd Ridge (LL) 5 Atlas Northwest field. (A) Location map of Lloyd Ridge 50 Atlas and Atlas NW 5 fields. (B) Seismic profile.
Reprinted with permission of Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD =
deep induction.

Atlas Northwest Field, Figure 18



Figure 19. Lloyd Ridge Atlas 50 field. Gamma-ray (GR) and resistivity log. See Figure 18A for location map and Figure 18B for seismic
profile. See Figure 4 for the regional setting of the field. ILD = deep induction.

Atlas Field, Figure 19



Figure 20. Lloyd Ridge (LL) 399 Cheyenne field. (A) Location map of LL 399. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Cheyenne Field, Figure 20



Figure 21. Mississippi Canyon (MC) 79 Otis field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger. (C)
Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. RACLM = attenuated resistivity.

Otis Field, Figure 21



Figure 22. Mississippi Canyon (MC) 84 King–King West field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

King Field, Figure 22



Figure 23. Mississippi Canyon (MC) 126–127 Horn Mountain field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Horn Mountain Field, Figure 23



Figure 24. Mississippi Canyon (MC) 161 field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger. (C)
Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

MC 161 Field, Figure 24



Figure 25. Mississippi Canyon (MC) 199 Mandy field. (A) Location map of MC 199 Mandy field and MC 243 Matterhorn. (B) Seismic
profile. Reprinted with permission of Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field.
ILD = deep induction.

Mandy Field, Figure 25



Figure 26. Mississippi Canyon 243 Matterhorn field. Gamma-ray (GR) and resistivity log. See Figure 25A for location map and Figure
25B for seismic profile. See Figure 4 for the regional setting of the field. ILD = deep induction.

Matterhorn Field, Figure 26



Figure 27. Mississippi Canyon (MC) 211–167 Mica field. (A) Location map of MC 211 Mica and MC 299 17 Hands fields. (B) Seismic
profile. Reprinted with permission of Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field.
ILD = deep induction.

Mica Field, Figure 27



Figure 28. Mississippi Canyon 299 17 Hands field. Gamma-ray (GR) and resistivity log. See Figure 27A for location map and Figure 27B
for seismic profile. See Figure 4 for the regional setting of the field. ILD = deep induction.

Seventeen Hands Field, Figure 28



Figure 29. Mississippi Canyon (MC) 217 Kings Peak field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

King’s Peak Field, Figure 29



Figure 30. Mississippi Canyon (MC) 248 Raton, MC 292 Raton South, and MC 292 Gemini fields. Note: The Gemini field was discovered
and developed first and was then sold to Noble, who developed the Raton and Raton South fields. The three reservoirs are stratigraphically
trapped and offset of one another. (A) Location map. (B) Seismic profile across the MC 292 Gemini field. After Abriel (2008). Reprinted with
permission of Society of Exploration Geophysicists. (C) Gamma-ray (GR) and resistivity log from the MC 292 well (Gemini). (D) The GR and
resistivity log from the MC 248-1 well (Raton). See Figure 4 for the regional setting of the field. ILD = deep induction.

Gemini-Raton-Raton South Field, Figure 30



Figure 30. Continued.

Gemini-Raton-Raton South Field, Figure 30



Figure 31. Mississippi Canyon (MC) 252 Rigel field. (A) Location map. (B) Seismic profile. (C) Gamma-ray (GR) and resistivity log. See
Figure 4 for the regional setting of the field. ILD = deep induction.

Rigel Field, Figure 31



Figure 32. Mississippi Canyon (MC) 253 Neidermeyer field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Neidermeyer Field, Figure 32



Figure 33. Mississippi Canyon (MC) 300 Marmalard field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Marmalard Field, Figure 33



Figure 34. Mississippi Canyon (MC) 305 Aconcagua field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Aconcagua Field, Figure 34



Figure 35. Mississippi Canyon (MC) 348 Camden Hills field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Camden Hills Field, Figure 35



Figure 36. Mississippi Canyon (MC) 383 Kepler field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger.
(C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Kepler Field, Figure 36



Figure 37. Mississippi Canyon (MC) 392 Appomattox field. (A) Location map of MC 392 Appomattox field. (B) Seismic profile. Reprinted
with permission of Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep
induction.

Appomattox Field, Figure 37



Figure 38. Mississippi Canyon (MC) 427 La Femme field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

La Femme Field, Figure 38



Figure 39. Mississippi Canyon (MC) 429 Ariel field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger.
(C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Ariel Field, Figure 39



Figure 40. Mississippi Canyon (MC) 431 Son of Bluto II field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Son of Bluto 2 Field, Figure 40



Figure 41. Mississippi Canyon (MC) 460 Appaloosa field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Appaloosa Field, Figure 41
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Figure 42. Mississippi Canyon (MC) 502 Longhorn North and 546 Longhorn field. (A) Location map. (B) Seismic profile. Reprinted with
permission of Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Longhorn-Longhorn North Field, Figure 42



Figure 43. Mississippi Canyon (MC) 503 Who Dat field. (A) Location map. (B) Seismic profile. (C) Gamma-ray (GR) and resistivity log.
Reprinted with permission of Schlumberger. See Figure 4 for the regional setting of the field. ILD = deep induction.

Who Dat Field, Figure 43



Figure 44. Mississippi Canyon (MC) 506Wrigley field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger.
(C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Wrigley Field, Figure 44



Figure 45. Mississippi Canyon (MC) 519–520 Santiago–Santa Cruz field. Note: The Santiago field was discovered in 2009. Santa Cruz is
the downdip extension of the reservoir across the fault that was drilled in 2011. (A) Location map of MC 519–520 Santiago–Santa Cruz field.
Also shown are the locations for (B) and (C). (B) Seismic profile across the MC 519–520 Santiago–Santa Cruz field. Reprinted with
permission of Schlumberger. (C) Gamma-ray (GR) and resistivity log from the MC 519-1. See Figure 4 for the regional setting of the field.
ILD = deep induction.

Santiago-Santa Cruz Field, Figure 45



Figure 46. Mississippi Canyon (MC) 520 Herschel field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Herschel Field, Figure 46



Figure 47. Mississippi Canyon (MC) 522 Fourier field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger.
(C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Fourier Field, Figure 47



Figure 48. Mississippi Canyon (MC) 525 Rydberg field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray and resistivity log. See Figure 4 for the regional setting of the field.

Rydberg Field, Figure 48



Figure 49. Mississippi Canyon (MC) 538 Medusa North field. (A) Location map of MC 538 Medusa North field and MC 582 Medusa field.
(B) Seismic profile. Reprinted with permission of Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting
of the field. ILD = deep induction.

Medusa North Field, Figure 49



Figure 50. Mississippi Canyon (MC) 582 Medusa field. (A) Seismic profile. Reprinted with permission of Schlumberger. (B) Gamma-ray
(GR) and resistivity log. See Figure 49A for location of profile and well. See Figure 4 for the regional setting of the field. ILD = deep induction.

Medusa Field, Figure 50



Figure 51. Mississippi Canyon (MC) 562 Isabela field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger.
(C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Isabela Field, Figure 51



Figure 52. Mississippi Canyon (MC) 583 Ulysses field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger.
(C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Ulysses Field, Figure 52



Figure 53. Mississippi Canyon (MC) 607 East Antsey field. (A) Location map of MC 607 East Antsey and MC 696 Blind Faith fields. (B)
Seismic profile. Reprinted with permission of Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of
the field. ILD = deep induction.

East Antsey Field, Figure 53



Figure 54. Mississippi Canyon 696 Blind Faith field. Gamma-ray (GR) and resistivity log. See Figure 53A for location map and Figure
53B for seismic profile. See Figure 4 for the regional setting of the field. ILD = deep induction.

Blind Faith Field, Figure 54



Figure 55. Mississippi Canyon (MC) 657 Coulomb field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Coulomb Field, Figure 55



Figure 56. Mississippi Canyon (MC) 698 Big Bend field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Big Bend Field, Figure 56



Figure 57. Mississippi Canyon (MC) 699 Troubadour field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field.

Troubadour Field, Figure 57



Figure 58. Mississippi Canyon (MC) 705 Biddy Ball field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Biddy Ball Field, Figure 58



Field Name Valley Forge (Figure 59)

Block Numbers MC 707
Partners LLOG (100%)
Discovery Date July 2004
Production Start Date July 2008
Production Facility Subsea tie-back to Grand Isle 115
Water Depth (feet) 1,548
Development Status Shut-in May 2015; Re-startup: late 2015
Number of Wells 1
Number of Reservoirs 2
Drive Mechanism partial water
Age early Pliocene 
Sedimentary deposit channel fill-thin bed levees
Trap three-way closure against salt 
Liquids Recoverable Reserves (MMbbl) produced 4  to date 
Sulfur Content (percent) 0
Upper Seal shale
Lateral Seal shale

Figure 59. Mississippi Canyon (MC) 707 Valley Forge field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Valley Forge Field, Figure 59



Figure 60. Mississippi Canyon (MC) 711 Gomez field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger.
(C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Gomez Field, Figure 60



Figure 61. Mississippi Canyon (MC) 718 Pluto field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger.
(C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Pluto Field, Figure 61



Field Name Tubular Bells (Figure 62)

Block Numbers MC 725, MC 682, MC 683, MC 726, MC 727
Partners Hess (57.14%), Chevron (42.86%)
Discovery Date November 2003
Production Start Date November 2014
Production Facility Subsea tie-back to Tubular Bells SPAR in MC 724
Water Depth (feet) 4326
Development Status producing 
Number of Wells 4
Number of Reservoirs 4
Drive Mechanism water drive
Age middle Miocene
Sedimentary deposit channel fill
Trap three-way closure against base of salt
Initial Production (BOPD), (MCFGPD) 50,000-60,000 BOPD
Gas Oil Ratio 2,000-5,000
Secondary Recovery possible water injection
Porosity (percent) 17-28
Permeability (mD) 30-450 
Initial Reservoir Temperature Range (°F) 250
Initial Reservoir Pressure Range (PSI) 15,000-19,000
API Oil Gravity 35
Pay Thickness (feet) 125-200 (gross)
Oil Column (feet) >570 
Upper Seal salt
Lateral Seal shale
Reservoir Intervals (Subsea true vertical depth-feet) 22,000-25,000 
Source Of Information Xia er al., 2009

Greeley et al., 2013
Cossey and Associates Inc.

Figure 62. Mississippi Canyon (MC) 725–674 Tubular Bells field. (A) Location map. (B) Seismic profile. After Xia et al. (2009). Reprinted
with permission of Society of Exploration Geophysicists. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the
field. ILD = deep induction.

Tubular Bells Field, Figure 62



Figure 63. Mississippi Canyon (MC) 731 Mensa field. (A) Location map. (B) Seismic profile. Reproduced with the permission of the Gulf
Coast Section SEPM Foundation, and any other use requires their permission. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the
regional setting of the field. ILD = deep induction.

Mensa Field, Figure 63



Figure 64. Mississippi Canyon (MC) 751 Goose field. (A) Location map. Also shown are the locations for (B) and (C). (B) Seismic profile
across the MC 751 Goose field. Reprinted with permission of Schlumberger. (C) Gamma-ray (GR) and resistivity log from theMC 751-1 well.
See Figure 4 for the regional setting of the field. ILD = deep induction.

Goose Field, Figure 64



Figure 65. Mississippi Canyon (MC) 754 Anduin West field. (A) Location map of MC 754 Anduin West and 755 Anduin fields. (B) Seismic
profile. Reprinted with permission of Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field.
ILD = deep induction.

Anduin West Field, Figure 65



Figure 66. Mississippi Canyon (MC) 755 Anduin field. (A) Seismic profile. Reprinted with permission of Schlumberger. (B) Gamma-ray
(GR) and resistivity log from the MC 755-1. See Figure 65A for location map and Figure 65B for seismic profile. See Figure 4 for the regional
setting of the field. ILD = deep induction.

Anduin Field, Figure 66



Figure 67. Mississippi Canyon (MC) 762 West Boreas field. (A) Location map for MC 762 West Boreas, MC 806 Deimos, and MC 807
Mars fields. Two different tension leg platforms (TLPs) are present in MC 807. The original TLP is located in central MC 807 and was
completed in 1996. This TLP includes all wells labeled A001–A019 in blocks 807, 763, 806, 850, and 851. The Mars B (Olympus) Platform
was competed in 2014 and lies along the western border of MC 807. The Mars B wells (MB001–MB024) are located in MC 806. The West
Boreas subsea wells are labeled WB001–WB004 and SS001. The Deimos subsea wells are labeled DM001–DM004, and South Deimos are
labeled SD001–SD002. (B) Seismic profile. After Sloan and King (2014). Inset map is an amplitude extraction from top reservoir. Locations of
profile and wells are shown. Reprinted with permission of Society of Petroleum Engineers. (C) Gamma-ray (GR) and resistivity log. See Figure
4 for the regional setting of the field. ILD = deep induction.

West Boreas Field, Figure 67



Figure 68. Mississippi Canyon (MC) 806 Deimos field. (A) Location map. (B) Seismic profile. After Smit et al. (2008). Reprinted with
permission of Society of Exploration Geophysicists. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field.
ILD = deep induction.

Deimos Field, Figure 68



Figure 69. Mississippi Canyon (MC) 807 Mars field. (A) Location map. (B) Seismic profile. After Kabir et al. (2006). Reprinted with
permission of Society of Exploration Geophysicists. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field.
ILD = deep induction.

Mars Field, Figure 69



Figure 70. Mississippi Canyon (MC) 764 King field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger.
(C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

King Field, Figure 70



Figure 71. Mississippi Canyon (MC) 765–766 Princess field. (A) Location map for MC 765–766 Princess and MC 809 Ursa fields. The
tension leg platform (TLP) for Ursa field is located in the southeast quadrant of MC 809. The Princess subsea wells (P001–P008 in MC 765,
766) are tied back to a drill center in northern MC 809, which is subsequently tied back to the Ursa platform; PI001 and PI002 are injector
wells. The Ursa subsea wells are A001 to A012; UI001 to UI003 are injector wells. The drilling center in the southwest quadrant of MC 810
was the original location of the Ursa TLP, before the failure of the manifolds (Winker and Stancliffe, 2007). The TLP was eventually moved to
its current location in MC 809. (B) Seismic profile. After Bouma et al. (2006). Reprinted with permission of Shell Oil. (C) Gamma-ray (GR)
and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Princess Field, Figure 71



Field Name Ursa (Figure 72)

Block Numbers MC 809, 808, 810, 852, 854
Partners Shell (45.39%), BP (22.69%),

ConocoPhillips (15.96%), ExxonMobil (15.96%)
Discovery Date January 1991
Production Start Date April 1999
Production Facility Subsea tie-back to Ursa TLP in MC 810
Water Depth (feet) 4,019
Development Status producing
Number of Wells 14
Number of Reservoirs 3
Age late Miocene to early Pliocene
Sedimentary deposit channel fill- sheets
Trap three-way closure against base of salt
Liquids Recoverable Reserves (MMbbl) 375
Gas Recoverable Reserves (BCF) 553
Gas Oil Ratio 1,400
Porosity (percent) 24-30
Permeability (mD) 25-625 
Initial Reservoir Temperature Range (°F) 175
API Oil Gravity 27.3-30
Sulfur Content (percent) 1.5-1.9
Upper Seal salt
Lateral Seal shale
Reservoir Intervals (Subsea true vertical depth-feet) 12,000-19,300 
Source Of Information Meckel, 2002

Cossey and Associates Inc.

Figure 72. Mississippi Canyon (MC) 809 Ursa field. (A) Seismic profile. After Meckel et al. (2002). Reproduced with the permission of the
Gulf Coast Section SEPM Foundation, and any other use requires their permission. (B) Gamma-ray (GR) and resistivity log. See Figure 71A
for location of figures. See Figure 4 for the regional setting of the field. ILD = deep induction.

Ursa Field, Figure 72



Figure 73. Mississippi Canyon (MC) 771 Goldfinger field. (A) Location map of MC 771 Goldfinger field, MC 772 Triton field, and MC 773
Devil’s Tower field. Amplitude extraction of a lower Pliocene horizon is shown superposed on nonidentified structure contour (orange lines).
After Wieg and Fingleton (2004). (B) Seismic profile (after Wieg and Fingleton, 2004). (C) Gamma-ray (GR) and resistivity log. Figures (A)
and (B) are republished by permission of the Gulf Coast Association of Geological Societies, whose permission is required for further
publication use. See Figure 4 for the regional setting of the field. ILD = deep induction.

Goldfinger Field, Figure 73



Figure 74. Mississippi Canyon (MC) 772 Triton field. (A) Seismic profile across the MC 772 Triton field (after Wieg and Fingleton, 2004).
Republished by permission of the Gulf Coast Association of Geological Societies, whose permission is required for further publication use.
(B) Gamma-ray (GR) and resistivity log. See Figure 73A for location of seismic profile and well. See Figure 4 for the regional setting of the
field. ILD = deep induction.

Triton Field, Figure 74



Figure 75. Mississippi Canyon (MC) 773 Devil’s Tower. (A) Seismic profile (after Wieg and Fingleton, 2004). Republished by permission
of the Gulf Coast Association of Geological Societies, whose permission is required for further publication use. (B) Gamma-ray (GR) and
resistivity log. See Figure 73A for location of seismic profile and well. See Figure 4 for the regional setting of the field. ILD = deep induction.

Devil’s Tower Field, Figure 75



Figure 76. Mississippi Canyon (MC) 776 Thunder Horse North field. (A) Location map. (B) Seismic profile. After Ray et al. (2005).
Reprinted with permission of Society of Exploration Geophysicists. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional
setting of the field. ILD = deep induction.

Thunder Horse North Field, Figure 76



Figure 77. Mississippi Canyon (MC) 778 Thunder Horse field, (A) Location map. (B) Seismic profile. After Lapinski (2003). (C) Gamma-
ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Thunder Horse Field, Figure 77



Field Name Dantzler (Figure 78) 

Block Numbers MC 782
Partners Noble (45%), W&T Offshore (20%), ILX Prosp (17.5%)

Ridgewood (17.5%)
Discovery Date December 2013
Production Start Date November 2015
Production Facility Subsea tie-back to Thunder Hawk Floating Produciton Unit in MC 736
Water Depth (feet) 6613
Development Status producing
Number of Wells 2
Number of Reservoirs 2
Age late Miocene
Sedimentary deposit channel fill-levee
Trap three-way closure against salt flank
Liquids Recoverable Reserves (MMbbl) 65-100 
Pay Thickness (feet) 120 (gross)
Oil Column (feet) 120
Upper Seal shale
Lateral Seal shale
Source Of Information D. Huffman, pers. comm., 2015

Figure 78. Mississippi Canyon (MC) 782 Dantzler field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field.

Dantzler Field, Figure 78



Figure 79. Mississippi Canyon (MC) 800 Gladden field. (A) Location map. (B) Seismic profile. Reprinted with permission of
Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Gladden Field, Figure 79



Figure 80. Mississippi Canyon (MC) 837 field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger. (C)
Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

MC 837 Field, Figure 80



Figure 81. Mississippi Canyon (MC) 876 Callisto field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger.
(C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Callisto Field, Figure 81



Figure 82. Mississippi Canyon (MC) 899 Crosby field. (A) Location map. (B) Seismic profile. After Kasten and Thompson (2002). Dashed
blue lines and green lines indicate the fault traces between the number 4 and 5 wells. Green Bice horizon is 9.0 Ma (Meckel et al., 2002)
Reproduced with the permission of the Gulf Coast Section SEPM Foundation, and any other use requires their permission. (C) Gamma-ray
(GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Crosby Field, Figure 82



Figure 83. Mississippi Canyon (MC) 935 Europa field. (A) Location map. (B) Seismic profile. Reprinted with permission of Schlumberger.
(C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Europa Field, Figure 83



Figure 84. Mississippi Canyon (MC) 941Mirage field. (A) Location map of MC 941Mirage andMC 942Morgus fields. (B) Seismic profile.
Reprinted with permission of Schlumberger. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD =
deep induction.

Mirage Field, Figure 84



Figure 85. Mississippi Canyon (MC) 942 Morgus field. (A) Seismic profile. Reprinted with permission of Schlumberger. (B) Gamma-ray
(GR) and resistivity log. See Figure 84A for location map and Figure 84B for seismic profile. See Figure 4 for the regional setting of the field.
ILD = deep induction.

Morgus Field, Figure 85



Figure 86. Atwater Valley (AT) 63 Telemark Field. (A) Location map. (B) Seismic profile. After Wilson et al. (2002). Reprinted with
permission of AAPG. (C) Gamma-ray (GR) and resistivity log. See Figure 4 for the regional setting of the field. ILD = deep induction.

Telemark Field, Figure 86



Figure 87. Mississippi Canyon (MC) 734 Thunder Hawk field. (A) Location map. (B) Gamma-ray (GR) and resistivity log. See Figure 4 for
the regional setting of the field. ILD = deep induction.

Thunder Hawk Field, Figure 87



Figure 88. Mississippi Canyon (MC) 771 Kodiak field. (A) Location map. (B) Gamma-ray (GR) and resistivity log. See Figure 4 for the
regional setting of the field. ILD = deep induction.

Kodiak Field, Figure 88



Figure 89. Mississippi Canyon (MC) 948 Gunflint field. (A) Location map. (B) Gamma-ray (GR) and resistivity log. See Figure 4 for the
regional setting of the field. ILD = deep induction.

Gunflint Field, Figure 89



Figure 90. Mississippi Canyon (MC) 984 Vito field. (A) Location map. (B) Gamma-ray (GR) and resistivity log. See Figure 4 for the
regional setting of the field. ILD = deep induction.

Vito Field, Figure 90
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