Supplementary data

Table S1 TOC values in Figure 14 and data sources.

	Data So	ource : N	Ma et al.	2019																		
Well ZK43-6	Dulu D	Juree . 1	in or any	2012																		
Corrected depth (m)	151.7	152.4	153.1	153.8	154.5	155.2	155.9	156.6	157.3	158	158.7	159.4										
TOC (wt%)	3.21	3.61	3.54	2.36	2.89	7.62	3.11	9.72	1.86	1.7	2.19	4.35										
Well ZK0408	Data So	ource : A	Ai et al.,	2020a, b	; Ai et al	., 2021																
Corrected depth (m)	138.8	147.1	149.2	150	150.8	152.9	153.6	154.4	154.9	154.9	155.4	155.6	157.7	157.9	158.3	159.1	159.6	160.6	161	161.4		
TOC (wt%)	0.56	2.1	1.9	1.8	2.1	2.3	2.6	2.9	2.7	2.69	2.7	2.94	2.8	3.1	3.4	2.7	2.8	3.9	3.9	4.5		
Corrected depth (m)	161.7	161.8	162.3	162.7	163	163.5	163.6	164.2	164.8	165.3	165.6	166	166.5	166.8	167.8							
TOC (wt%)	4.4	4.38	3.5	4.3	1.5	3.3	4	1.9	1.6	1.37	1.4	0.55	2.1	0.83	2.2							
Well ZK105	Data So	ource : Z	Zhang et	al., 2015																		
Corrected depth (m)	125.3	135.3	151.3	160.3	168.3	176.3	178.3	182.3	184.3	192.3	193.3	199.3	203.3	206.3	209.3	211.3	214.3	218.3	219.3	220.3	222.3	225.3
TOC (wt%)	0.2	0.49	0.18	0.22	0.02	0.14	0.37	0.32	1.34	3.31	3.9	1.76	2.84	3.21	4.59	2.72	1.87	6.35	2.73	1.45	3.3	2.48
Daotuo Section	Data So	ource : V	Wei et al	., 2020																		
Corrected depth (m)	13.84	16.4	22.19	30.14	37.12	46.85	60.65	68.34	77.66	88.69	98.42	106.9	115.4	123.7	130.4	140.5	149.7	159.5	166.9	174.4		
TOC (wt%)	0.23	0.21	0.23	0.17	0.12	0.22	0.11	0.11	0.17	0.13	0.4	0.12	0.12	0.1	0.09	0.09	0.09	0.17	0.18	0.42		
Corrected depth (m)	183.3	191	199.5	206.5	212.3	218.2	225	229.7	234.7	238	242.5	244.4	246.3	247.9	250.1	251.8	253.5	254.4	256.1	256.8		
TOC (wt%)	0.24	0.18	0.17	0.17	0.13	0.49	0.86	0.46	0.8	2	1.19	2.87	3.73	4.26	3.86	2.44	2.59	2.76	2.61	3.03		
Corrected depth (m)	257.8	258.7	260	261.1	262	262.7	264	264.4	268.7	272.6	275.5	281.6	285									
TOC (wt%)	2.92	2.78	3.29	3.15	1.5	2.18	2	0.62	1.76	2.29	0.28	0.63	0.12									

Well ZK4207	Data Source : Yu et al., 2016																		
Corrected depth (m)	354.1	357.6	359.9	362	364.2	365.7	366.6	367	367.5	367.9	368.3	368.8	369.3	369.7	370.2	370.5	371	371.4	371.9
TOC (wt%)	2.7	2.9	2.41	2.38	3.49	3.44	2.27	1.91	2.26	2.53	2.02	2.72	2.33	2.17	1.44	1.66	1.63	2.22	2.61
Corrected depth (m)	372.7	373.3	373.9	374.5	374.9	375.4	375.7	376.1	376.6	377.2	377.8	378.1	378.6	379.2	379.5	380			
TOC (wt%)	2.19	1.67	1.74	1.51	1.64	1.47	2.29	2.06	1.98	1.95	1.98	2.21	3.46	1.61	2.78	1.75			

System	Formation	Location	Sample source	Strata thickness (m)	Source rock thickness (m)	TOC range (wt%) (sample numbers)	Average TOC (wt%)	Requ (%) (sample numbers)	Conversion equation or method	Data sources
Cambrian	Qiongzhusi Fm.	Sichuan Basin	Core samples, drilling cuttings and field outcrops	60-500	60-300	0.09 - 6.12 (176)	1.94	1.83 - 3.90	Liu et al., 2009	Zou et al., 2014
Ediogeran	Dengying Fm.	Sichuan Basin	Core samples, drilling cuttings and field outcrops	0-30	0-30	0.08 - 7.4 (31)	1.43	3.16-3.21	Liu et al., 2009	Zou et al., 2014
Eulacaran	Doushantuo Fm.	Sichuan Basin	Core samples, drilling cuttings and field outcrops	0-40	0-40	0.11-4.64 (50)	1.69	2.08-3.82	Liu et al., 2009	Zou et al., 2014
			Core samples (Well ZK105)	230	51.3	0.18-6.35(22)	2.3	×	×	Zhang et al., 2015
			Field outcrops (Datangpo)	×	×	2-6.88 (33)	4.02	×	×	Tan et al., 2021
		Songtao, Guizhou Province	Field outcrops	180	30	3.1-6.3(13)	4.3	2.19-2.47(3)	Requ= 0.3364 + 0.6569 Rb; Feng and Chen, 1988	Xie et al., 2017
			Core samples (Well ZK4207)	370	40	0.22-3.49(36)	2.16	×	×	Yu et al., 2016
			Field outcrops (Yanglizhang)	×	17	0.05-5.04(45)	1.51	2.0-2.5	Buchardt and Lewan, 1990	Zhu et al., 2019
			Core samples (Well ZK105)	230	51.3	0.18-6.35(22)	2.3	×	×	Zhang et al., 2015
			Core samples (Well ZK2303)	×	23.7	2.95-3.97 (5)	×	×	×	Hohl et al., 2020
		Daotuo Section, Guizhou Province	Core samples (Well ZK2303)	×	23.7	1.2-4.3(17)	3	×	×	Wei et al., 2016
			Daotuo Section	275	41	0.1-4.26(53)	1.17	×	×	Wei et al., 2020
			Core samples (Well ZK2115)	×	66.01	×	×	×	×	Wang et al., 2020
		Xiangtan, Hunan Province	Core samples (Well ZK3603)	×	89	0.42-4.8 (46)	3.32	×	×	Peng et al., 2019
		Minle Section, Hunan Province	Field outcrops	220	33	1.6-4.77(21)	2.68	×	x	Cheng et al., 2018
			Field outcrops	×	×	1.9-4.7 (13)	2.56	×	×	Li et al., 2012
Cryogenian	Datangpo		Core samples (Well ZK43-6)	150	27	1.7-9.72(12)	3.85	×	×	Ma et al., 2019
Cryogenian	Fm.		Field outcrops	105	30	3.47-8.5(6)	4.7	2.37(1)	Requ= 0.3364 + 0.6569 Rb; Feng and Chen, 1988	Xie et al., 2017
		Xiaochawan Section Xiushan Chongging	Field outcrops	×	×	0.16-3.69(18)	1.7	1.54-3.23(3)	Requ=(Rb+0.2443)/1.0495; Scholoenherr et al., 2007	Qu et al., 2020
		Museul Section, Mushan, Chongqing	Field outcrops	×	30	0.02-3.46(36)	0.99	2.0-2.5	Buchardt and Lewan, 1990	Zhu et al., 2019
			Core samples (Well ZK0408)	158.7	21.4	0.55-4.5(35)	×	2.52 (1)	Requ= (0.618 × Rb) + 0.40; Jacob, 1989	Ai et al., 2020a,b; Ai et al 2021
		Viseri Section Changeing	Field outcrops	×	12	0.05-3.69(26)	1.61	2.0-2.5	Buchardt and Lewan, 1990	Zhu et al., 2019
		Alaoxi Section, Chongqing	Field outcrops	×	16	1.6-3.69 (23)	×	2.2-2.8	Buchardt and Lewan, 1990	Zhu et al., 2020
		Sanlian Section, Chongqing	Field outcrops	×	24	0.08-3.64(31)	1.57	2.0-2.5	Buchardt and Lewan, 1990	Zhu et al., 2019
		Qianzimen Section, Xiushan, Chongqing	Field outcrops	×	10	0.4-4.47(9)	2.2	2.2(1)	Requ= 0.3364 + 0.6569 Rb; Feng and Chen, 1988	Xie et al., 2017
		Gaodongyuan Section, Chongqing	Field outcrops	×	12	0.8-3.22(22)	1.91	2.0-2.5	Buchardt and Lewan, 1990	Zhu et al., 2019
		Yangjiaping Section, Hunan Province	Field outcrops	×	×	0.1-3.8(7)	×	×	×	Li et al., 2012
		Shennongjia Section, Hubei Province and Xiushan Section, Chongqing	Field outcrops	>100	>50	0.16-3.69 (18)	1.7	1.54-3.23	Requ=(Rb+0.2443)/1.0495; Scholoenherr et al., 2007	Li, 2019
		Gucheng Section, Changyang, Hubei Province	Field outcrops	×	×	0.14-4.58(21)	2.32	2.0-2.5	Buchardt and Lewan, 1990	Zhu et al., 2019

Table S2 Statistics of source rock conditions of the Datangpo, Doushantuo, Dengying, and Qiongzhusi formations, including thickness, TOC and equivalent vitrinite reflectance, etc.

TOC means total organic carbon; Requ means equivalent vitrinite reflectance; Rb means bitumen reflectance; Fm. means Formation.

Supplementary Table Reference

- Ai, J., N. Zhong, S. C. George, Y. Zhang, L. Yao, and T. Wang, 2020a, Evolution of paleo-weathering during the late Neoproterozoic in South China: Implications for paleoclimatic conditions and organic carbon burial: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 555, doi: 10.1016/j.palaeo.2020.109843.
- Ai, J. Y., S. C. George, and N. N. Zhong, 2020b, Organic geochemical characteristics of highly mature Late Neoproterozoic black shales from South China: Reappraisal of syngeneity and indigeneity of hydrocarbon biomarkers: Precambrian Research, v. 336, doi: 10.1016/j.precamres.2019.105508.
- Ai, J., N. Zhong, T. Zhang, Y. Zhang, T. Wang, and S. C. George, 2021, Oceanic water chemistry evolution and its implications for post-glacial black shale formation: Insights from the Cryogenian Datangpo Formation, South China: Chemical Geology, v. 566, doi: 10.1016/j.chemgeo.2021.120083.
- Buchardt, B., and M. Lewan, 1990, Reflectance of vitrinite-like macerals as a thermal maturity index for Cambrian–Ordovician Alum Shale, southern Scandinavia: AAPG Bulletin, v. 74, p. 394-406, doi: 10.1306/0C9B230D-1710-11D7-8645000102C1865D.
- Cheng, M., C. Li, X. Chen, L. Zhou, T. J. Algeo, H.-F. Ling, L.-J. Feng, and C.-S. Jin, 2018, Delayed Neoproterozoic oceanic oxygenation: Evidence from Mo isotopes of the Cryogenian Datangpo Formation: Precambrian Research, v. 319, p. 187-197, doi: 10.1016/j.precamres.2017.12.007.
- Feng, G., and S. Chen, 1988, Relationship between the reflectance of bitumen and vitrinite in rock: Natural Gas Industry, v. 8, p. 20-25.
- Hohl, S. V., S.-Y. Jiang, S. Viehmann, W. Wei, Q. Liu, H.-Z. Wei, and S. J. G. Galer, 2020, Trace metal and Cd isotope systematics of the basal Datangpo Formation, Yangtze Platform (South China) indicate restrained (Bio) geochemical metal cycling in Cryogenian seawater: Geosciences, v. 10, p. 1-27, doi: 10.3390/geosciences10010036.
- Jacob, H., 1989, Classification, structure, genesis and practical importance of natural solid oil bitumen ("migrabitumen"): International Journal of Coal Geology, v. 11, p. 65-79, doi: 10.1016/0166-5162(89)90113-4.
- Li, C., G. D. Love, T. W. Lyons, C. T. Scott, L. Feng, J. Huang, H. Chang, Q. Zhang, and X. Chu, 2012, Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China: Earth and Planetary Science Letters, v. 331-332, p. 246-256, doi: 10.1016/j.epsl.2012.03.018.
- Li, P., 2019, Development and distribution of the main Neoproterozoic source-reservoir strata in the Yangtze Block (In Chinese): Master's thesis, Northwest University, Xi'an, Shanxi, 89 p.
- Liu, D. H., X. M. Xiao, H. Tian, C. Yang, A. P. Hu, and Z. G. Song, 2009, Identification of natural gas origin using the characteristics of bitumen and fluid inclusions (In Chinese): Petroleum Exploration and Development v. 36, p. 375-382.
- Ma, Z., X. Liu, W. Yu, Y. Du, and Q. Du, 2019, Redox conditions and manganese metallogenesis in the Cryogenian Nanhua Basin: Insight from the basal Datangpo Formation of South China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 529, p. 39-52, doi: 10.1016/j.palaeo.2019.05.031.
- Peng, X., X.-K. Zhu, F. Shi, B. Yan, F. Zhang, N. Zhao, P. Peng, J. Li, D. Wang, and G. A. Shields, 2019, A deep marine organic carbon reservoir in the non-glacial Cryogenian ocean (Nanhua Basin, South China) revealed by organic carbon isotopes: Precambrian Research, v. 321, p. 212-220, doi: 10.1016/j.precamres.2018.12.013.

- Qu, H., P. Li, Y. Dong, B. Yang, S. Chen, X. Han, K. Wang, and M. He, 2020, Development and distribution rules of the main Neoproterozoic source and reservoir strata in the Yangtze Block, Southern China: Precambrian Research, v. 350, doi: 10.1016/j.precamres.2020.105915.
- Schoenherr, J., R. Littke, J. L. Urai, P. A. Kukla, and Z. Rawahi, 2007, Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen: Organic Geochemistry, v. 38, p. 1293-1318, doi: 10.1016/j.orggeochem.2007.03.010.
- Wang, P., T. J. Algeo, Q. Zhou, W. Yu, Y. Du, Y. Qin, Y. Xu, L. Yuan, and W. Pan, 2019, Large accumulations of 34S-enriched pyrite in a low-sulfate marine basin: The Sturtian Nanhua Basin, South China: Precambrian Research, v. 335, doi: 10.1016/j.precamres.2019.105504.
- Wei, G. Y., W. Wei, D. Wang, T. Li, X. Yang, G. A. Shields, F. Zhang, G. Li, T. Chen, T. Yang, and H.-F. Ling, 2020, Enhanced chemical weathering triggered an expansion of euxinic seawater in the aftermath of the Sturtian glaciation: Earth and Planetary Science Letters, v. 539, doi: 10.1016/j.epsl.2020.116244.
- Wei, W., D. Wang, D. Li, H. Ling, X. Chen, G. Wei, F. Zhang, X. Zhu, and B. Yan, 2016, The marine redox change and nitrogen cycle in the Early Cryogenian interglacial time: Evidence from nitrogen isotopes and Mo contents of the basal Datangpo Formation, northeastern Guizhou, South China: Journal of Earth Science, v. 27, p. 233-241, doi: 10.1007/s12583-015-0657-1.
- Xie, Z., G. Wei, J. Zhang, W. Yang, L. Zhang, Z. Wang, and J. Zhao, 2017, Characteristics of source rocks of the Datangpo Fm, Nanhua System, at the southeastern margin of Sichuan Basin and their significance to oil and gas exploration: Natural Gas Industry B, v. 4, p. 405-414, doi: 10.1016/j.ngib.2017.09.011.
- Zhang, F., X. Zhu, B. Yan, B. Kendall, X. Peng, J. Li, T. J. Algeo, and S. Romaniello, 2015, Oxygenation of a Cryogenian ocean (Nanhua Basin, South China) revealed by pyrite Fe isotope compositions: Earth and Planetary Science Letters, v. 429, p. 11-19, doi: 10.1016/j.epsl.2015.07.021.
- Zhu, G., T. Li, K. Zhao, Z. Zhang, W. Chen, H. Yan, K. Zhang, and L. Chi, 2019, Excellent source rocks discovered in the Cryogenian interglacial deposits in South China: Geology, geochemistry, and hydrocarbon potential: Precambrian Research, v. 333, doi: 10.1016/j.precamres.2019.105455.
- Zhu, G., T. Li, Z. Zhang, K. Zhao, K. Zhang, W. Chen, H. Yan, and P. Wang, 2020, Distribution and geodynamic setting of the Late Neoproterozoic– Early Cambrian hydrocarbon source rocks in the South China and Tarim Blocks: Journal of Asian Earth Sciences, v. 201, p. 1-24, doi: 10.1016/j.jseaes.2020.104504.
- Zou, C., G. Wei, C. Xu, J. Du, Z. Xie, Z. Wang, L. Hou, C. Yang, J. Li, and W. Yang, 2014, Geochemistry of the Sinian–Cambrian gas system in the Sichuan Basin, China: Organic Geochemistry, v. 74, p. 13-21, doi: 10.1016/j.orggeochem.2014.03.004.