Datashare 125

Tectonic and paleogeographic controls on development of the Early–Middle Ordovician Shanganning Carbonate Platform, Ordos Basin, North China

Zhonghong Chen, Zhi Chai, Bin Cheng, Hua Liu, Yingchang Cao, Zicheng Cao, and Jiangxiu Qu

AAPG Bulletin, v. 105, no. 1 (January 2021), pp. 65–107 Copyright ©2021. The American Association of Petroleum Geologists. All rights reserved.

Table S1	Absol	ute Cc	ncent	ations	of n-A	Ikanes	of the	Oils ir	ו the C)rdovic	ian Cal	rbonat	e Rock	s Usec	l in Th	is Stud	٨									
<i>n</i> -Alkanes	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
SHB1	0.39	1.55	2.85	3.52	3.75	3.53	3.28	2.89	2.66	2.44	2.17	1.91	1.73	1.56	1.42	1.33	1.17	0.98	0.83 ().63 (.43 (0.33	0.23	0.15	0.11	0.06
SHB1-1H	0.98	2.06	2.95	3.28	3.18	2.97	2.67	2.36	2.05	1.82	1.55	1.34	1.20	1.02	0.87	0.73	0.61	0.49	0.35 (0.27 (.19 (0.13	0.10	0.06	0.05	0.03
SHB1-2H	0.05	0.53	1.59	2.39	2.93	2.88	2.70	2.44	2.14	1.90	1.64	1.39	1.20	0.99	0.83	0.61	0.42	0.31	0.21 (0.14 (0.09	0.06	0.04	0.02	0.01	0.00
SHB1-3CH	0.04	0.60	1.70	2.30	2.38	2.32	2.15	1.97	1.66	1.44	1.24	1.04	0.89	0.74	0.58	0.45	0.32	0.23	0.14 (0.11	0.07	0.05	0.04	0.03	0.02	0.01
SHB1-9	0.76	1.77	2.80	3.23	3.25	3.00	2.74	2.36	2.14	1.92	1.64	1.42	1.25	1.08	0.97	0.84	0.73	0.63	0.47 (0.40	0.29	0.22	0.17	0.11	0.07	0.04
SHBICX	1.13	2.60	3.79	4.18	4.17	3.64	3.32	3.02	2.59	2.32	1.95	1.69	1.49	1.26	1.12	1.01	0.83	0.70	0.52 (0.46 (34 (0.27	0.21	0.16	0.12	0.09
SHBP1H	1.80	2.94	3.67	3.95	3.88	3.41	3.21	2.84	2.51	2.24	1.95	1.71	1.56	1.39	1.23	1.04	0.94	0.82	0.63 ().53 (39 (0.29	0.21	0.15	0.11	0.07
SHB3	0.88	1.76	2.67	3.21	3.27	3.07	3.09	2.81	2.57	2.49	2.35	2.27	2.15	2.12	1.95	1.78	1.55	1.36	1.13 (0.82 (.60	0.43	0.30	0.18	0.13	0.07
																										l

Table S2. Absolute Concentrations of Terpanes of the Oils in the Ordovician Carbonate Rocks Used in This Study

				-															
Well	C19TT	C20TT	C21TT	С22П	С23П	C24TT	C25TT	C24TeT	C26TT	C28TT	С29П	Ts	Tm	C30TT	C29H	C29Ts	C30H	C31H(22S)	C31H(22R)
SHB1	13.0	34.8	24.5	10.1	55.8	36.4	34.4	10.0	27.5	27.9	40.6	14.2	5.2	36.0	9.2	5.4	17.1	14.9	20.4
SHB1-1H	8.8	14.8	5.6	3.3	13.1	7.1	9.9	3.8	7.1	6.4	10.7	5.3	4.8	6.7	7.2	1.9	13.2	2.6	5.9
SHB1-2H	6.6	13.1	3.9	2.1	9.1	5.4	4.2	1.7	4.8	4.5	6.1	1.3	1.5	5.5	/	/	/	/	/
SHB1-3CH	5.2	12.8	3.2	1.6	0.6	5.1	4.2	2.1	6.7	3.5	5.1	1.8	1.4	4.7	/	/	/	/	/
SHB1-9	7.6	19.6	5.9	2.2	11.3	6.6	5.9	2.1	4.4	5.8	11.0	3.6	2.3	7.9	2.4	1.3	4.8	/	/
SHBICX	9.5	19.9	7.0	3.8	16.2	7.3	6.7	3.9	7.1	5.7	12.5	2.4	2.3	<i>T.T</i>	1.5	1.2	2.7	/	/
SHBP1H	8.1	19.8	15.0	6.0	32.8	22.1	18.4	2.1	16.2	17.5	25.2	4.7	3.0	20.8	2.6	0.8	6.3	7.4	10.4
Abbreviation	:: / = no d	ata; H = hc	pane; TeT	= tetracycli	ic terpane;	$Tm = 17\alpha($	(H)-trisnorho	opane; Ts =	1800(H)-tris	norneohop	ane; TT = t	ricyclic te	rpane.						

DBI MDBI DMDBI IMDBI FL MFL D 63 289 581 341 35 120	TMP DBT MDBT DMDBT TMDBT FL MFL D 295 63 289 581 341 35 120	C2-P TMP DBT MDBT DMDBT TMDBT FL MFL D	MP C2-P TMP DBT MDBT DMDBT TMDBT FL MFL D	P MP C2-P TMP DBT MDBT DMDBT TMDBT FL MFL D	TEMN P MP C2-P TMP DBT MDBT DMDBT TMDBT FL MFL D	TIMN TEMN P MP C2-P TIMP DBT MDBT DMDBT TIMDBT FL MFL D	DMN TMN TEMN P MP C2-P TMP DBT MDBT DMDBT TMDBT FL MFL C	M-FN DMN TMN TANN P MP C2-P TMP DRT MDRT DMDRT TMDRT FI MF P	EN M-EN DMN TMN TAMN P MP (7-P TMP DRT MDRT DMDRT TMDRT ET MET P		NI NANI ENI MAENI PANNI TANNI TANNI DI MADI CO DI TANDI COTI NANDI TANNDI TANNDI TANNDI TANNDI TANNDI TANN
63 289 581 341 35 12	295 63 289 581 341 35 12									win en men uwin iwin iennin famin fan de inden umudei imudei flami.	N MIN EN M'EIN DIVIN I IMIN I EININ Y MIY CZ-Y IMIY DBI MUBI DIVIDBI IMUBI FL MI
		519 295 63 289 581 341 35 120	357 519 295 63 289 581 341 35 120	96 357 519 295 63 289 581 341 35 120	125 96 357 519 295 63 289 581 341 35 120	219 125 96 357 519 295 63 289 581 341 35 120	55 219 125 96 357 519 295 63 289 581 341 35 120	145 55 219 125 96 357 519 295 63 289 581 341 35 120	0.5 145 55 219 125 96 357 519 295 63 289 581 341 35 120	0.9 0.5 145 55 219 125 96 357 519 295 63 289 581 341 35 120	0.1 0.9 0.5 145 55 219 125 96 357 519 295 63 289 581 341 35 120
85 297 483 242 35 133	163 85 297 483 242 35 133	314 163 85 297 483 242 35 133	243 314 163 85 297 483 242 35 133	76 243 314 163 85 297 483 242 35 133	62 76 243 314 163 85 297 483 242 35 133	105 62 76 243 314 163 85 297 483 242 35 133	16 105 62 76 243 314 163 85 297 483 242 35 133	47 16 105 62 76 243 314 163 85 297 483 242 35 133	0.2 47 16 105 62 76 243 314 163 85 297 483 242 35 133	0.7 0.2 47 16 105 62 76 243 314 163 85 297 483 242 35 133	0.0 0.7 0.2 47 16 105 62 76 243 314 163 85 297 483 242 35 133
65 246 434 239 32 127 232	182 65 246 434 239 32 127 232	345 182 65 246 434 239 32 127 232	255 345 182 65 246 434 239 32 127 232	75 255 345 182 65 246 434 239 32 127 232	72 75 255 345 182 65 246 434 239 32 127 232	163 72 75 255 345 182 65 246 434 239 32 127 232	95 163 72 75 255 345 182 65 246 434 239 32 127 232	143 95 163 72 75 255 345 182 65 246 434 239 32 127 232	0.2 143 95 163 72 75 255 345 182 65 246 434 239 32 127 232	1.1 0.2 143 95 163 72 75 255 345 182 65 246 434 239 32 127 232	0.0 1.1 0.2 143 95 163 72 75 255 345 182 65 246 434 239 32 127 232
94 321 489 242 37 139	147 94 321 489 242 37 139	299 147 94 321 489 242 37 139	243 299 147 94 321 489 242 37 139	80 243 299 147 94 321 489 242 37 139	62 80 243 299 147 94 321 489 242 37 139	152 62 80 243 299 147 94 321 489 242 37 139	81 152 62 80 243 299 147 94 321 489 242 37 139	119 81 152 62 80 243 299 147 94 321 489 242 37 139	0.2 119 81 152 62 80 243 299 147 94 321 489 242 37 139	1.1 0.2 119 81 152 62 80 243 299 147 94 321 489 242 37 139	0.1 1.1 0.2 119 81 152 62 80 243 299 147 94 321 489 242 37 139
94 321 489 242 37 82 286 466 234 34	14/ 94 321 489 242 37 171 82 286 466 234 34	299 14/ 94 521 489 242 57 317 171 82 286 466 234 34	243 299 14/ 94 321 489 242 37 238 317 171 82 286 466 234 34	80 243 299 147 94 321 489 242 37 72 238 317 171 82 286 466 234 34	02 80 243 299 147 94 321 489 242 37 73 72 238 317 171 82 286 466 234 34	152 62 60 245 299 147 94 521 489 242 57 177 73 72 238 317 171 82 286 466 234 34	81 152 62 80 245 299 147 94 521 489 242 57 320 177 73 72 238 317 171 82 286 466 234 34	119 81 152 62 80 243 299 147 94 521 489 242 57 160 320 177 73 72 238 317 171 82 286 466 234 34	0.2 119 81 152 62 80 243 299 147 94 521 489 242 57 8.7 160 320 177 73 72 238 317 171 82 286 466 234 34	1.1 0.2 119 81 132 62 80 243 299 147 94 321 489 242 37 24.4 8.7 160 320 177 73 72 238 317 171 82 286 466 234 34	0.1 1.1 0.2 119 81 152 62 80 245 299 147 94 521 489 242 57 0.2 24.4 8.7 160 320 177 73 72 238 317 171 82 286 466 234 34
82 286 466 234 95 337 534 264	171 82 286 466 234 158 95 337 534 264	317 171 82 286 466 234 310 158 95 337 534 264	238 317 171 82 286 466 234 243 310 158 95 337 534 264	72 238 317 171 82 286 466 234 79 243 310 158 95 337 534 264	73 72 238 317 171 82 286 466 234 66 79 243 310 158 95 337 534 264	177 73 72 238 317 171 82 286 466 234 162 66 79 243 310 158 95 337 534 264	320 177 73 72 238 317 171 82 286 466 234 112 162 66 79 243 310 158 95 337 534 264	160 320 177 73 72 238 317 171 82 286 466 234 139 112 162 66 79 243 310 158 95 337 534 264	8.7 160 320 177 73 72 238 317 171 82 286 466 234 0.5 139 112 162 66 79 243 310 158 95 337 534 264	24.4 8.7 160 320 177 73 72 238 317 171 82 286 466 234 1.6 0.5 139 112 162 66 79 243 310 158 95 337 534 264	0.2 24.4 8.7 160 320 177 73 72 238 317 171 82 286 466 234 0.1 1.6 0.5 139 112 162 66 79 243 310 158 95 337 534 264
82 286 466 95 337 534	1/1 82 286 466 158 95 337 534 222 23 237 534	31/ 1/1 82 286 466 310 158 95 337 534 	238 51/ 1/1 82 286 466 243 310 158 95 337 534 	72 238 517 171 82 286 466 79 243 310 158 95 337 534 00 200 200 200 200 200 200	/3 /2 238 51/ 1/1 82 286 466 66 79 243 310 158 95 337 534 00 00 100 100 100 100 000 000	1// /3 /2 238 31/ 1/1 82 286 466 162 66 79 243 310 158 95 337 534 202 202 202 202 202 202 202 202 202 202	320 1// /3 /2 238 31/ 1/1 82 286 466 112 162 66 79 243 310 158 95 337 534 	160 520 1// /3 /2 238 51/ 1/1 82 286 466 139 112 162 66 79 243 310 158 95 337 534 200 201 201 201 201 201 201 201 201 201	8./ 160 5.20 1// /3 /2 2.38 51/ 1/1 82 2.86 466 0.5 139 112 162 66 79 2.43 310 158 95 337 534 0.7 200 00 00 00 00 00 00 00 000 000 000 0	24.4 8./ 160 520 1// /3 /2 238 31/ 1/1 82 286 466 1.6 0.5 139 112 162 66 79 243 310 158 95 337 534 2.7 2.2 2.6 2.4 310 158 95 337 534	0.2 24.4 8.7 160 520 177 73 72 238 317 171 82 286 466 0.1 1.6 0.5 139 112 162 66 79 243 310 158 95 337 534 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 00 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
65 246 94 321 82 286 95 337	182 65 246 147 94 321 171 82 286 158 95 337	345 182 65 246 299 147 94 321 317 171 82 286 310 158 95 337	255 345 182 65 246 243 299 147 94 321 238 317 171 82 286 243 310 158 95 337	75 255 345 182 65 246 80 243 299 147 94 321 72 238 317 171 82 286 79 243 310 158 95 337	72 75 255 345 182 65 246 62 80 243 299 147 94 321 73 72 238 317 171 82 286 66 79 243 310 158 95 337	163 72 75 255 345 182 65 246 152 62 80 243 299 147 94 321 177 73 72 238 317 171 82 286 162 66 79 243 310 158 95 337	95 163 72 75 255 345 182 65 246 81 152 62 80 243 299 147 94 321 320 177 73 72 238 317 171 82 286 112 162 66 79 243 310 158 95 337	143 95 163 72 75 255 345 182 65 246 119 81 152 62 80 243 299 147 94 321 160 320 177 73 72 238 317 171 82 286 139 112 162 66 79 243 310 158 95 337	0.2 143 95 163 72 75 255 345 182 65 246 0.2 119 81 152 62 80 243 299 147 94 321 8.7 160 320 177 73 72 238 317 171 82 286 0.5 139 112 162 66 79 243 310 158 95 337	1.1 0.2 143 95 163 72 75 255 345 182 65 246 1.1 0.2 119 81 152 62 80 243 299 147 94 321 24.4 8.7 160 320 177 73 72 238 317 171 82 286 1.6 0.5 139 112 162 66 79 243 310 158 95 337	0.0 1.1 0.2 143 95 163 72 75 255 345 182 65 246 0.1 1.1 0.2 119 81 152 62 80 243 299 147 94 321 0.2 24.4 8.7 160 320 177 73 72 238 317 171 82 286 0.1 1.6 0.5 139 112 162 66 79 243 310 158 95 337
85 65 94 82 95	163 85 182 65 147 94 171 82 158 95	314 163 85 345 182 65 399 147 94 317 171 82 310 158 95	243 314 163 85 255 345 182 65 243 299 147 94 238 317 171 82 243 310 158 95	76 243 314 163 85 75 255 345 182 65 80 243 299 147 94 72 238 317 171 82 79 243 310 158 95	62 76 243 314 163 85 72 75 255 345 182 65 62 80 243 299 147 94 73 72 238 317 171 82 73 72 238 317 171 82 66 79 243 310 158 95	105 62 76 243 314 163 85 163 72 75 255 345 182 65 152 62 80 243 299 147 94 177 73 72 238 317 171 82 162 66 79 243 310 158 95	16 105 62 76 243 314 163 85 95 163 72 75 255 345 182 65 81 152 62 80 243 299 147 94 320 177 73 72 238 317 171 82 112 162 66 79 243 310 158 95	47 16 105 62 76 243 314 163 85 143 95 163 72 75 255 345 182 65 119 81 152 62 80 243 299 147 94 160 320 177 73 72 238 317 171 82 139 112 162 66 79 243 310 158 95	0.2 47 16 105 62 76 243 314 163 85 0.2 143 95 163 72 75 255 345 182 65 0.2 119 81 152 62 80 243 299 147 94 8.7 160 320 177 73 72 238 317 171 82 0.5 139 112 162 66 79 243 310 158 95	0.7 0.2 47 16 105 62 76 243 314 163 85 1.1 0.2 143 95 163 72 75 255 345 182 65 1.1 0.2 119 81 152 62 80 243 299 147 94 24.4 8.7 160 320 177 73 72 238 317 171 82 1.6 0.5 139 112 162 66 79 243 310 158 95	0.0 0.7 0.2 47 16 105 62 76 243 314 163 85 0.0 1.1 0.2 143 95 163 72 75 255 345 182 65 0.1 1.1 0.2 119 81 152 62 80 243 299 147 94 0.1 1.1 0.2 119 81 152 62 80 243 299 147 94 0.2 24.4 8.7 160 320 177 73 72 238 317 171 82 0.1 1.6 0.5 139 112 162 66 79 243 310 158 95
	163 182 147 171 171 158	314 163 345 182 345 182 299 147 317 171 310 158	243 314 163 255 345 182 255 345 182 243 299 147 238 317 171 243 310 158	76 243 314 163 75 255 345 182 80 243 299 147 72 238 317 171 79 243 310 158	62 76 243 314 163 72 75 255 345 182 62 80 243 299 147 73 72 238 317 171 66 79 243 310 158 65 79 243 310 158	105 62 76 243 314 163 163 72 75 255 345 182 152 62 80 243 299 147 177 73 72 238 317 171 162 66 79 243 310 158 162 66 79 243 310 158	16 105 62 76 243 314 163 95 163 72 75 255 345 182 81 152 62 80 243 299 147 320 177 73 72 238 317 171 112 162 66 79 243 310 158	47 16 105 62 76 243 314 163 143 95 163 72 75 255 345 182 119 81 152 62 80 243 299 147 160 320 177 73 72 238 317 171 139 112 162 66 79 243 310 158	0.2 47 16 105 62 76 243 314 163 0.2 143 95 163 72 75 255 345 182 0.2 119 81 152 62 80 243 299 147 8.7 160 320 177 73 72 238 317 171 0.5 139 112 162 66 79 243 310 158	0.7 0.2 47 16 105 62 76 243 314 163 1.1 0.2 143 95 163 72 75 255 345 182 1.1 0.2 119 81 152 62 80 243 299 147 24.4 8.7 160 320 177 73 72 238 317 171 1.6 0.5 139 112 162 66 79 243 310 158	0.0 0.7 0.2 47 16 105 62 76 243 314 163 0.0 1.1 0.2 143 95 163 72 75 255 345 182 0.1 1.1 0.2 119 81 152 62 80 243 299 147 0.1 1.1 0.2 119 81 152 62 80 243 299 147 0.2 24.4 8.7 160 320 177 73 72 238 317 171 0.1 1.6 0.5 139 112 162 66 79 243 310 158 0.1 1.6 0.5 139 112 162 66 79 243 310 158

Table 53. Absolute Concentrations of Aromatic Hydrocarbons of the Oils in the Ordovician Carbonate Bocks Used in This Study

Abbreviations: / = no data; BNT = benzonaphthothiophene; C2-DBF = dimethyl and ethyl dibenzofurans; C2P = dimethyl and ethyl phenanthrenes; DBF = dibenzofuran; DBT = dibenzothiophene; DMDBT = dimethyl di-benzothiophene; DMFL = dimethyl fluorene; DMN = dimethyl naphthalene; EL = fluorene; MDBF = methyl dibenzofuran; MDBT = methyl dibenzothiophene; M-EN = methyl naphthalene; MFL = methyl fluorene; MN = methyl naphthalene; MP = methylphenanthrenes; N = naphthalene; P = phenanthrene; TAS = triaromatic steroid; TeMN = tetramethyl naphthalene; TMN = trimethyl naphthalene; TMP = trimethylphenanthrenes.

Figure S1. Distribution of absolute concentration of n-alkanes in the Ordovician oils from the Shuntuoguole low uplift in the Tarim Basin.

Figure S2. Absolute concentrations of terpanes (A), steranes (B), and aromatic hydrocarbons (C) of the oils in the Ordovician carbonate rocks used in this study. Ave = average; BNT = benzonaphthothiophene; C2-DBF = dimethyl and ethyl dibenzofuran; C2P = dimethyl and ethyl phenanthrene; DBF = dibenzofuran; DBT = dibenzothiophene; Dia = diasterane; DMDBT = dimethyl dibenzothiophene; DMFL = dimethyl fluorene; DMN = dimethyl naphthalene; EN = ethyl naphthalene; FL = fluorene; H = hopane; Max = maximum; MDBF = methyl dibenzofuran; MDBT = methyl dibenzothiophene; N = methyl-ethyl naphthalene; MFL = methyl fluorene; Min = minimum; MN = methyl naphthalene; MP = methylphenanthrene; N = naphthalene; P = phenanthrene; TAS = triaromatic steroid; TeMN = tetramethyl naphthalene; TMP = trimethylphenanthrene; TT = tricyclic terpane.

Figure S3. An oil–source rock correlation using the triaromatic steroid (TAS) parameters C_{28} -/($C_{26} + C_{27}$) TAS, C_{27} -20R/ C_{28} -20R TAS, and C_{26} -20S/ C_{28} -20S TAS and a set of source data based on the previous study (Chen et al., 2018b). (A) Crossplot of the triaromatic steroid parameters C_{28} /($C_{26} + C_{27}$) TAS versus C_{27} -20R/ C_{28} -20R TAS. (B) Crossplot of the triaromatic steroid parameters C_{28} /($C_{26} + C_{27}$) TAS versus C_{27} -20R/ C_{28} -20R TAS. (B) Crossplot of the triaromatic steroid parameters C_{26} -20S/ C_{28} -20S TAS versus C_{27} -20R/ C_{28} -20R TAS. (C) Crossplot of the triaromatic steroid parameters C_{26} -20S/ C_{28} -20S TAS versus C_{27} -20R/ C_{28} -20R TAS. (C) Crossplot of the triaromatic steroid parameters C_{26} -20S/ C_{28} -20S TAS versus C_{27} -20R/ C_{28} -20R TAS. (C) Crossplot of the triaromatic steroid parameters C_{26} -20S/ C_{28} -20S TAS versus C_{27} -20R/ C_{28} -20R TAS. (C) Crossplot of the triaromatic steroid parameters C_{26} -20S/ C_{28} -20S TAS versus C_{27} -20R/ C_{28} -20R TAS. (C) Crossplot of the triaromatic steroid parameters C_{26} -20S/ C_{28} -20S TAS versus C_{27} -20R/ C_{28} -20R TAS. (C) Crossplot of the triaromatic steroid parameters C_{26} -20S/ C_{28} -20S TAS versus C_{27} -20R/ C_{28} -20R TAS. (C) Crossplot of the triaromatic steroid parameters C_{26} -20S/ C_{28} -20S TAS versus C_{27} -20R/ C_{28} -20R TAS. (C) Crossplot of the triaromatic steroid parameters C_{26} -20S/ C_{28} -20R TAS. (C) Crossplot of the triaromatic steroid parameters C_{26} -20S/ C_{28} -20R TAS. (C) Crossplot of the triaromatic steroid parameters C_{26} -20S/ C_{28} -20R TAS. (C) Crossplot of the triaromatic steroid parameters C_{26} -20S/ C_{28} -20R TAS. (C) Crossplot of the triaromatic steroid parameters C_{26} -20S/ C_{28} -20R TAS. (C) Crossplot cr

Figure S4. Statistical results of the API (A), viscosity (B), sulfur content (C), and ratio of saturate to aromatic hydrocarbon contents (D) of Ordovician crude oils from the Shunbei no. 1 fault belt and Shunbei no. 5 fault belt in the SLU in comparison.

Figure S5. The drilling cores (A) and petroscopic photographs (B, C) showing that microscale sutures and fractures (F) are also well developed in the Ordovician carbonate rocks in the Tarim Basin. (A) The drilling cores of the Ordovician Yijianfang Formation at 7443.9m of the well SB2 showing that sutures are well developed and filled by solid bitumen (SB). (B, C) The microscopic photographs of the Ordovician Yingshan Formation in the Xikel Grand Canyon in Bachu area showing that transverse F (B) vertical F (C) are both developed. SV = solution void.

Figure S6. Plot of the absolute concentration of (3-+4-) methyldiamantane (MD) versus diamantane of the Ordovician crude oils from the Shunbei and Tahe oilfields in the Tarim basins.

REFERENCES CITED

Chen, Z., T.-G. Wang, M. Li, F. Yang, and B. Cheng, 2018b, Biomarker geochemistry of crude oils and Lower Paleozoic source rocks in the Tarim Basin, western China: An oil-source rock correlation study: Marine and Petroleum Geology, v. 96, p. 94–112, doi:10.1016 /j.marpetgeo.2018.05.023.